Research Highlights

Displaying 141 - 160 of 479
Atomic & Molecular Physics | Precision Measurement | Quantum Information Science & Technology
Twisting Atoms to Push Quantum Limits
Published:

The chaos within a black hole scrambles information. Gravity tugs on time in tiny, discrete steps. A phantom-like presence pervades our universe, yet evades detection. These intangible phenomena may seem like mere conjectures of science fiction, but in reality, experimental comprehension is not far, in neither time nor space. Astronomical advances in quantum simulators and quantum sensors will likely be made within the decade, and the leading experiments for black holes, gravitons, and dark matter will be not in space, but in basements – sitting on tables, in a black room lit only by lasers.

Read More
PI(s):
Ana Maria Rey | James Thompson
Laser Physics
A Collaborative Mastery of X-rays
Published:

The hardest problems are never solved by one person. They are solved by teams; or in the case of science, collaborations. It took a collaboration of 17 researchers, including four JILA fellows and another six JILA affiliates, just a little over five years to achieve robust polarization control over isolated attosecond (one billionth of a billionth of a second) pulses of extreme-ultraviolet light. 

Read More
PI(s):
Andreas Becker | Agnieszka Jaron-Becker | Henry Kapteyn | Margaret Murnane
Atomic & Molecular Physics
A Little Less Spontaneous
Published:

A large fraction of JILA research relies on laser cooling of atoms, ions and molecules for applications as diverse as world-leading atomic clocks, human-controlled chemistry, quantum information, new forms of ultracold matter and the search for new details of the origins of the universe. JILAns use laser cooling every day in their research, and have mastered arcane details of the process.

Read More
PI(s):
James Thompson | Murray Holland
Chemical Physics
An Electron Faucet
Published:

JILA researchers have created a laser-controlled "electron faucet", which emits a stable stream of low-energy electrons. These faucets have many applications for ultrafast switches and ultrafast electron imaging. The electron faucet starts with gold, spherical nanoshells. “They are glass cores with a thin, gold layer over them,” said Jacob Pettine, the graduate student on the project. These nanoshells are truly on the nanoscale, measuring less than 150 nanometers in diameter, which is “something like a thousandth of the size of a human hair,” said Pettine.

Read More
PI(s):
David Nesbitt
Atomic & Molecular Physics
Shake it Till You Make it
Published:

“Well, this isn’t going to work.” That was recent JILA graduate Carrie Weidner’s first thought when her advisor, JILA Fellow Dana Anderson, proposed the difficult experiment: to build an interferometer unlike any before – an interferometer of shaking atoms. But the grit paid off, as this compact and robust interferometer outperforms all others in filtering and distinguishing signal direction. While the designs of most atom interferometers are symmetric and elegant, Weidner says the shaken-lattice experiment proposed by Anderson “is more like broken eggs.”

Read More
PI(s):
Dana Anderson
Precision Measurement
Same Clock. New Perspective.
Published:

We all know what a tenth of a second feels like. It’s a jiffy, a snap of the fingers, or a camera shutter click. But what does 14 billion years–the age of the universe–feel like? JILA’s atomic clock has the precision to measure the age of the universe to within a tenth of a second. That sort of precision is difficult to intuit. Yet, JILA’s atomic clock, which is the most precise clock in the world, continues to improve its precision. The latest jump in precision, of nearly 50 percent, came about from a new perspective.

Read More
PI(s):
Jun Ye
Astrophysics
How a Dust Bunny Becomes a Planet
Published:

Jupiter is large enough to fit 1,300 Earths inside, and still have room. But like all planets, Jupiter was once nothing more than a cosmic dust bunny. A team of physicists at JILA and the University of Arizona, led by JILA Senior Research Associate Jake Simon, are studying how cosmic pebbles­­—­starting only a millimeter in size—can lead to the formation of planetesimals, the football-field-to-Delaware-sized primordial asteroids whose development defined our solar system’s architecture.

Read More
PI(s):
Phil Armitage
Nanoscience
Brightening the Dark State
Published:

Researchers from the Raschke group are lighting up dark excitons. Specifically, the Raschke group developed a method to observe dark excitons in a 2D (i.e., a single layer of atoms) semiconductor at room temperature. This observation is an exciting development in the story of dark exciton applications, which includes quantum information processing and fundamental studies of complex semiconductor materials.

Read More
PI(s):
Markus Raschke
Laser Physics
How Magnetism Melts Away
Published:

Magnets hold cards to your fridge, and store data in your computer. They can power speakers, and produce detailed medical images. And yet, despite millennia of use, and centuries of study, magnetism is still far from fully understood.

Read More
PI(s):
Henry Kapteyn | Margaret Murnane
Atomic & Molecular Physics
The Energetic Adolescence of Carbon Dioxide
Published:

The reaction, at first glance, seems simple. Combustion engines, such as those in your car, form carbon monoxide (CO). Sunlight converts atmospheric water into a highly reactive hydroxyl radical (OH). And when CO and OH meet, one byproduct is carbon dioxide (CO2) ­– a main contributor to air pollution and climate change.

Read More
PI(s):
Jun Ye
Biophysics
Molecule Movies, Now Filming at NIST
Published:

The actors are molecules. The plot, broken molecular bonds. JILA Fellow Ralph Jimenez and a team of detector experts at the National Institute of Standards and Technology (NIST) are working together to make X-ray movies of a molecular drama. The team at NIST built a microcalorimeter X-ray spectrometer capable of performing time-resolved spectroscopy; in other words: a camera to film molecules. They use this camera to learn how molecules break their bonds – do the ­electrons rearrange, do the other atoms quake?

Read More
PI(s):
Ralph Jimenez
Precision Measurement
And, The Answer Is . . . Still Round
Published:

Why are we here? This is an age-old philosophical question. However, physicists like Will Cairncross, Dan Gresh and their advisors Eric Cornell and Jun Ye actually want to figure out out why people like us exist at all. If there had been the same amount of matter and antimatter created in the Big Bang, the future of stars, galaxies, our Solar System, and life would have disappeared in a flash of light as matter and antimatter recombined.

Read More
PI(s):
Eric Cornell | Jun Ye
Atomic & Molecular Physics
It’s Triplets!
Published:

Newly minted JILA Ph.D. Catherine Klauss and her colleagues in the Jin and Cornell group decided to see what would happen to a Bose-Einstein condensate of Rubidium-85 (85Rb) atoms if they suddenly threw the whole experiment wildly out of equilibrium by quickly lowering the magnetic field through a Feshbach resonance.

Read More
PI(s):
Eric Cornell | Deborah Jin
Atomic & Molecular Physics | Precision Measurement
The Clock that Changed the World
Published:

Imagine A Future . . . The International Moon Station team is busy on the Moon’s surface using sensitive detectors of gravity and magnetic and electric fields looking for underground water-rich materials, iron-containing ores, and other raw materials required for building a year-round Moon station. The station’s mission: launching colonists and supplies to Mars for colonization. Meanwhile, back on Earth, Americans are under simultaneous assault by three Category 5 hurricanes, one in the Gulf of Mexico and two others threatening the Caribbean islands. Hundreds of people are stranded in the rising waters, but thanks precision cell-phone location services and robust cell-tower connections in high wind, their rescuers are able to accurately pinpoint their locations and send help immediately.

Read More
PI(s):
Jun Ye
Nanoscience | Quantum Information Science & Technology
A New Quantum Drum Refrain
Published:

Quantum computers require systems that can encode, manipulate, and transmit quantum bits, or qubits. A creative way to accomplish all this was recently demonstrated by Adam Reed and his colleagues in the Lehnert group. The researchers converted propagating qubits (encoded as superpositions1 of zero and one microwave photons) into the motion of a tiny aluminum drum. The successful conversion is considered a key step in using a mechanical drum to (1) transfer quantum information between microwave and optical frequencies or (2) store quantum information inside a quantum computer.

Read More
PI(s):
Konrad Lehnert
Atomic & Molecular Physics
Quantum Adventures with Cold Molecules
Published:

Researchers at JILA and around the world are starting a grand adventure of precisely controlling the internal and external quantum states of ultracold molecules after years of intense experimental and theoretical study. Such control of small molecules, which are the most complex quantum systems that can currently be completely understood from the principles of quantum mechanics, will allow researchers to probe the quantum interactions of individual molecules with other molecules, investigate what happens to molecules during collisions, and study how molecules behave in chemical reactions. 

Read More
PI(s):
Ana Maria Rey | John Bohn | Jun Ye
Quantum Information Science & Technology
E.T. Phone Home
Published:

When Steven Spielberg’s adorable extra-terrestrial, E. T., wanted to phone home, he should have contacted an information theorist like JILA’s Graeme Smith. Smith could have at least explained how E. T. could have used a cell phone to send a low-noise message to a cell phone tower,1 and from there––well to outer space (which is a problem that's much, much harder to solve than cell phone to cell phone tower transmissions).

Read More
PI(s):
Graeme Smith
Astrophysics
Something New Under the Sun
Published:

The Sun isn’t working the way we thought it did. Many astrophysicists haven't actually understood one aspect of how the Sun worked––until former senior research associate Nick Featherstone and senior research associate Brad Hindman set the record straight.

Read More
Biophysics
Precision Biomechanics
Published:

The Perkins group has made dramatic advances in the use of Atomic Force Microscopes (AFMs) to study large single biomolecules, such as proteins and nucleic acids (DNA, RNA), that are important for life. After previously improving AFM measurements of biomolecules by orders of magnitude for stability, sensitivity and time response, the Perkins group has now developed ways to make these precision biomechanical measurements up to 100 times faster than previously possible––obtaining useful information in hours to days rather than weeks to months. 

Read More
PI(s):
Thomas Perkins
Laser Physics
Lassoing Colors with Atomic Cowpokes
Published:

Getting lasers to have a precise single frequency (color) can be trickier than herding cats. So it’s no small accomplishment that the Thompson group has figured out how to use magnetic fields to create atomic cowpokes to wrangle a specific single color into place so that it doesn’t wander hither and yon. The researchers do this with a magnetic field that causes strontium atoms in an optical cavity to stop absorbing light and become transparent to laser light at one specific color. What happens is that the magnetic field creates a transparent window that serves as a gate to let only light of a single frequency pass through.

Read More
PI(s):
James Thompson