Quantum Information Science & Technology

A second revolution of quantum physics is being ushered by the increasing understanding and control of complex quantum interactions. Unprecedented levels of precision quantum measurements of time, length, electromagnetic fields, gravity and many other quantities will improve our daily lives, create new products and services, and promote security. Exquisite control of complex quantum states will lead to powerful quantum computers and quantum networks. And advanced quantum measurements will allow tabletop experiments to observe colliding black holes, illuminate dark matter, simulate exotic quantum environments, sew connections between gravity and quantum, and identify cracks in our standard model of physics. 

JILA’s Quantum Information Science & Technology (QIST) research has strong foundations in entanglement, single atom trapping, magnetism-based quantum simulators, macro quantum objects, and translation of quantum information between light and mechanical motion. JILA’s QIST research helps advance fundamental quantum science, the development of high-impact quantum technologies, and training future generations of QIST innovators.

Researchers in Quantum Information Science & Technology

Photograph of Dana Anderson Dana Z. Anderson
Focus: Quantum Sensors, Precision Measurement Role: Experimentalist
Photograph of Andreas Becker Andreas Becker
Focus: Ultrafast Phenomena, Attosecond Dynamics, Coherent Control Role: Theorist
Photograph of John Bohn John Bohn
Focus: Cold Molecules, Quantum Many-body Systems Role: Theorist
Photograph of Eric Cornell Eric Cornell
Focus: BEC, Precision Measurement, Molecules, Frequency Combs Role: Experimentalist
Photograph of Daniel Dessau. Daniel Dessau
Focus: Spectroscopist studying electronic structure, magnetic structure, and phase transitions of novel materials systems Role: Experimentalist
Photograph of Murray Holland Murray Holland
Focus: Quantum Optics, Cold Atoms Role: Theorist
Photograph of Agnieszka Jaron-Becker Agnieszka Jaron-Becker
Focus: Theoretical AMO, Ultrafast Laser Science Role: Theorist
Photograph of Ralph Jimenez Ralph Jimenez
Focus: Biophysics, Ultrafast Lasers, Chemical Physics, Microfluidics Role: Experimentalist
Photograph of Henry Kapteyn Henry Kapteyn
Focus: Ultrafast Lasers & X-Rays, Imaging, Chemical Physics, Quantum & Optical Science, Nanoscience, Materials, Molecular Science Role: Experimentalist
Photograph of Adam Kaufman Adam Kaufman
Focus: Many-body physics, Ultracold atoms, Quantum simulation Role: Experimentalist
Photograph of Konrad Lehnert Konrad Lehnert
Focus: Quantum Nanomechanics, Microwave Quantum Optics, Mesoscopic Physics Role: Experimentalist
Photograph of Heather Lewandowski Heather Lewandowski
Focus: Cold Molecules, Chemical Physics Role: Experimentalist
Photograph of David Nesbitt David Nesbitt
Focus: Chemical Physics, Biophysics, Molecular Ions Role: Experimentalist
Photograph of Margaret Murnane Margaret Murnane
Focus: Ultrafast Lasers & X-Rays, Imaging, Chemical Physics, Quantum & Optical Science, Nanoscience, Materials, Molecular Science Role: Experimentalist
Markus Raschke Markus Raschke
Focus: Ultrafast Nano-optics, Chemical Physics, Nanoscience Role: Experimentalist
Photograph of Cindy Regal Cindy Regal, Baur-SPIE Professor in Optical Physics and Photonics
Focus: Quantum Nanomechanics, Single Atom Trapping Role: Experimentalist
Photograph of Ana Maria Rey Ana Maria Rey
Focus: Cold Atoms and Molecules, Quantum Many-body Systems, Precision Measurement, Quantum Information Role: Theorist
Photograph of Thomas Schibli Thomas Schibli
Focus: Optics and photonics through advanced functional materials, novel laser systems and measurement techniques Role: Experimentalist
Photograph of Graeme Smith Graeme Smith
Focus: Quantum information, Quantum computing Role: Theorist
Photograph of James Thompson James Thompson
Focus: Cold Atoms, Quantum Optics and Information, Precision Measurement Role: Experimentalist
Photograph of Jun Ye Jun Ye
Focus: Cold Atoms and Molecules, Frequency Combs, Ultrastable Lasers, Precision Measurement Role: Experimentalist
Shuo Sun photograph. Shuo Sun
Focus: Quantum Optics; Nanophotonics; Solid-state Quantum Information Processing Role: Experimentalist

Recent Highlights in Quantum Information Science & Technology

When it comes to creating ever more intriguing quantum systems, a constant need is finding new ways to observe them in a wide range of physical scenarios.  JILA Fellow Cindy Regal and JILA and NIST Fellow Ana Maria Rey have teamed up with Oriol Romero-Isart, a professor at the University of Innsbruck and IQOQI (Institute for Quantum Optics and…

There are many methods to determine what the limits are for certain processes. Many of these methods look to reach the upper and lower bounds to identify them for making accurate measurements and calculations. In the growing field of quantum sensing, these limits have yet to be found.  That may change, thanks to research done by JILA Fellow…

At ultra-cold temperatures, quantum mechanics dictate how particles bump into each other. The collisions depend both on the quantum statistics of the colliding partners (their location within the medium) and on their collisional energy and angular momentum.  The angular momentum of the particles creates an energy barrier, a field of energy that…