Ever since the invention of the visible laser over 50 years ago, scientists have been striving to create lasers that generate coherent beams at shorter wavelengths i.e. the extreme UV (EUV) and soft X-ray (SXR) regions of the spectrum. This quest has led to the construction of large facilities, such as kilometer-scale x-ray free-electron lasers, to reach the keV photon energy region.
About the Kapteyn-Murnane Group
Our group is developing new probes of quantum matter using coherent X-ray beams, which have undergone a revolution in the past decade. More than 50 years after the demonstration of the visible laser, it is finally possible to generate laser-like beams spanning the deep-UV, extreme ultraviolet (EUV) and soft X-ray regions of the spectrum by harnessing high harmonic upconversion of femtosecond lasers. Moreover, by combining phase matching techniques and selection rules, we can achieve exquisite “quantum” control over x-ray light. It is now possible to produce short wavelength waveforms with controlled spectral and temporal shapes, polarization state, and phase structure. Exciting recent advances also include the first sub-wavelength imaging at short wavelengths, the ability to directly manipulate spins in materials using light, the first methods to measure the full mechanical properties of ultrathin films and nanostructured media, uncovering new regimes of nanoscale heat flow, as well as routes for mapping new states and phases in quantum materials. Ultrafast coherent EUV and x-ray beams are thus becoming indispensable tools in the race to develop new nanoscale and quantum devices.
We welcome trainees from physics, materials science, engineering and chemistry to work together to solve grand-challenge scientific problems that are also at the technological forefront. Trainees from our group go on to positions in academe, industry and national laboratories.
Research Areas
In the Spotlight
JILA has officially launched its new Research Professional Development Program, an initiative designed to provide graduate students and postdoctoral researchers with comprehensive skills beyond their core scientific training. Focusing on leadership, mentorship, big-picture thinking, and equity in research environments, this program aims to equip participants with the tools they need to become successful scientific leaders.
Read More
JILA and University of Colorado Boulder Physics graduate student Emma Nelson achieved notable recognition by securing 3rd place at the CU Boulder 2024 Innovation in Materials Symposium on August 15, 2024. Held at CU Boulder, this symposium is a significant platform for the materials research community, bringing together faculty, students, and industry professionals from CU Boulder and beyond. The event is dedicated to supporting interdisciplinary collaboration and furthering discussions in the field of materials science.
Read More
Anya Grafov, a graduate student at JILA, has been awarded the Best Poster Award at the IEEE Magnetics Society Summer School 2024. Studying under JILA Fellows and University of Colorado Boulder Physics professors Margaret Murnane and Henry Kapteyn, Grafov's poster titled “Probing Ultrafast Spin Dynamics with Extreme Ultraviolet High Harmonics” was one of only nine to receive this prestigious recognition.
Read More
Yunzhe “Oliver” Shao, a graduate student at JILA in the group led by JILA Fellows and University of Colorado Boulder Physics professors Margaret Murnane and Henry Kapteyn, has been awarded the Best Paper Award at the IEEE Conference on Computational Imaging Using Synthetic Apertures.
Read More
JILA Address
We are located at JILA: A joint institute of NIST and the University of Colorado Boulder.
Map | JILA Phone: 303-492-7789 | Address: 440 UCB, Boulder, CO 80309