Our group explores many facets of ultracold strontium (Sr), emphasizing precision measurement and quantum state engineering and manipulation of atomic states. The group has achieved exquisite technical control via precision stabilization of lasers and the realization of ultracold atoms in optical lattices. Early on, we focused on precision measurements of Sr electronic transitions, which occur at optical frequencies, to explore the possibility of developing an optical atomic clock.
About the Ye Group
Quantum science and precision metrology — quantum matter probed with novel light source
Our research group explores the frontier of light-matter interactions. Precisely controlled lasers enable our communications with microscopically engineered quantum systems of atoms and molecules. By preparing matter in specific quantum states, and using probe light with the longest coherence time and precisely controlled waveform, we strive to make fundamental scientific discoveries and develop new enabling technologies.
The strongly integrated development of scientific vision and experimental tools has enabled us to advance important topics in precision measurement, quantum many-body physics, quantum metrology, ultrafast science, and quantum science in general. For example, we employ quantum gas of strontium atoms confined in optical lattices to achieve best performing atomic clocks and investigate novel quantum dynamics, combining quantum metrology and quantum simulation. We prepare molecules in quantum degenerate gases to engineer tunable Hamiltonians for correlated quantum phenomena. These quantum-state prepared molecules are also explored for test of fundamental physics and study of quantum chemistry. Stable lasers and optical frequency combs are extending precision spectroscopy and extreme nonlinear optics from mid infrared to extreme ultraviolet, providing novel probes for large quantum systems, trace detection for health and environment, and new spectroscopy opportunities for nuclear transitions.
Research Areas
Stories About Our Research
Research Highlights
In the Spotlight
In a recently released NOVA documentary called "Decoding the Universe: Quantum," JILA and NIST Fellow and CU Boulder Physics Professor Jun Ye brings his expertise to the screen, unveiling the mysteries of quantum mechanics and atomic clocks.
Read More
Flari Tech Inc., a startup rooted in cutting-edge JILA research, has clinched one of the prestigious 2024 Lab Venture Challenge (LVC) grants from the University of Colorado Boulder, advancing its pioneering work to build a breathalyzer for diagnostics use targeting life-threatening diseases such as lung cancer.
Developed at JILA by a team led by JILA and NIST Fellow and CU Boulder Physics professor Jun Ye and JILA graduate students Qizhong Liang and Apoorva Bisht, Flari Tech’s innovative diagnostic tool is powered by the Nobel Prize-winning optical frequency comb and aims to bring a novel, non-invasive, faster method for lung cancer detection for clinical use.
Read More
JILA postdoctoral researcher Simon Scheidegger has received the prestigious METAS 2024 Award from the Swiss Physical Society (SPS). Scheidegger, who is part of JILA and NIST Fellow Jun Ye's laboratory group, was awarded for his pioneering research on precise measurements of hydrogen energy levels during his PhD at ETH Zurich.
Read More
JILA postdoctoral researcher Jake Higgins, part of JILA and NIST Fellow and University of Colorado Boulder physics professor Jun Ye’s research group, has been awarded a coveted spot at the 2024 MIT Chemistry Future Faculty Symposium. This prestigious event will be held on August 12 and 13 on the MIT campus in Cambridge, MA, featuring some of the brightest early-career scientists poised to pursue academic careers.
Read More
JILA Address
We are located at JILA: A joint institute of NIST and the University of Colorado Boulder.
Map | JILA Phone: 303-492-7789 | Address: 440 UCB, Boulder, CO 80309