Our group explores many facets of ultracold strontium (Sr), emphasizing precision measurement and quantum state engineering and manipulation of atomic states. The group has achieved exquisite technical control via precision stabilization of lasers and the realization of ultracold atoms in optical lattices. Early on, we focused on precision measurements of Sr electronic transitions, which occur at optical frequencies, to explore the possibility of developing an optical atomic clock.
About the Ye Group
Quantum science and precision metrology — quantum matter probed with novel light source
Our research group explores the frontier of light-matter interactions. Precisely controlled lasers enable our communications with microscopically engineered quantum systems of atoms and molecules. By preparing matter in specific quantum states, and using probe light with the longest coherence time and precisely controlled waveform, we strive to make fundamental scientific discoveries and develop new enabling technologies.
The strongly integrated development of scientific vision and experimental tools has enabled us to advance important topics in precision measurement, quantum many-body physics, quantum metrology, ultrafast science, and quantum science in general. For example, we employ quantum gas of strontium atoms confined in optical lattices to achieve best performing atomic clocks and investigate novel quantum dynamics, combining quantum metrology and quantum simulation. We prepare molecules in quantum degenerate gases to engineer tunable Hamiltonians for correlated quantum phenomena. These quantum-state prepared molecules are also explored for test of fundamental physics and study of quantum chemistry. Stable lasers and optical frequency combs are extending precision spectroscopy and extreme nonlinear optics from mid infrared to extreme ultraviolet, providing novel probes for large quantum systems, trace detection for health and environment, and new spectroscopy opportunities for nuclear transitions.
Research Areas
Stories About Our Research
Research Highlights
In the Spotlight
JILA postdoctoral researcher Jake Higgins, part of JILA and NIST Fellow and University of Colorado Boulder physics professor Jun Ye’s research group, has been awarded a coveted spot at the 2024 MIT Chemistry Future Faculty Symposium. This prestigious event will be held on August 12 and 13 on the MIT campus in Cambridge, MA, featuring some of the brightest early-career scientists poised to pursue academic careers.
Read More
On July 3, 2024, Colorado Congresswoman Yadira Caraveo delved into the quantum realm during her first official visit to ]JILA, a joint institute established by the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder.
Read More
In a recent significant visit to JILA, a joint institute established by the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder, U.S. Senator John Hickenlooper discussed the transformative potential of quantum computing on Colorado's economy, job industry, and educational sector. The visit underscored the state's growing prominence in the quantum technology landscape.
Read More
In an exciting turn for physics research, four major foundations have announced a collaborative funding effort for 11 pioneering "tabletop" experiments. The Gordon and Betty Moore Foundation, the Simons Foundation, the Alfred P. Sloan Foundation, and the John Templeton Foundation have come together, committing a total of $30 million. This unique initiative focuses on supporting experiments that, despite their relatively modest scale, are set to delve into areas often reserved for large-scale facilities.
Among the funded projects, each of which will receive up to five years of financial support, is a particularly notable experiment led by JILA and NIST Fellow Jun Ye and his research team. Known for his remarkable work in physics, Ye's project stands out for its ambition and innovative approach. The experiment involves the development of ultra-precise atomic clocks, which are expected to significantly advance our understanding of both quantum mechanics and general relativity.
Read More
JILA Address
We are located at JILA: A joint institute of NIST and the University of Colorado Boulder.
Map | JILA Phone: 303-492-7789 | Address: 440 UCB, Boulder, CO 80309