About the Regal Group

We are grateful for funding for our research from these agencies

Our quantum systems explore the frontiers of control in atomic, optical, and mesoscopic physics. We laser cool the vibrations of mechanical objects that can measure displacements and extremely small forces at quantum limits.  We are able to entangle and interfere single atoms placed atom-by-atom in identical quantum states.  Our work enables transduction between disparate quantum systems and exploration of quantum many-body physics.

Research Areas

Laser cooling of atoms uses radiation forces of light to push on atoms, and has revolutionized atomic physics.  In our work, in a field known as optomechanics, we now have the capacity to cool vibrations of mesoscopic objects using radiation pressure combined with cryogenic cooling.  We pick out particular nanomechanical modes of the solid that are well-isolated from their environment, and that we can control with light using an extremely-precise optical cavity.

We are studying a quantum system of bosonic 87Rb atoms in optical tweezers assembled particle-by-particle.  We have shown optical tweezers can be used to confine atoms sufficiently to place them in their motional ground state via Raman sideband laser cooling.  With this ability, we make bosonic atoms indistinguishable in all but their positional degree of freedom, and we can interfer two atoms to see the analog of the Hong-Ou-Mandel effect with atoms. 

Electro-optic devices are ubiquitous in classical optical systems.  In the quantum domain, an electro-optic device would also be very handy, for example, to transduce states created with superconducting quantum bits (qubits) to optical light.  However, at the moment no electro-optic component exists that is low enough noise and efficient enough to work with quantum states.

We are building a new apparatus that will study large quantum systems of Rydberg atoms in optical tweezers harnessing a cryogenic, high-vacuum environment.  This work is collaboration with the Kaufman group at JILA.  Check back for more information!

Research Highlights

Optical tweezers achieve new feats of capturing atoms

Trapping single atoms is a bit like herding cats, which makes researchers at the University of Colorado Boulder expert feline wranglers. In a new study, a team led by physicist Cindy Regal showed that it could …
Read More

Quiet Drumming: Reducing Noise for the Quantum Internet

Quantum computers are set to revolutionize society. With their expansive power and speed, quantum computers could reduce today’s impossibly complex problems, like artificial intelligence and weather forecasts, to mere algorithms. But as…
Read More

Research Highlights

In the Spotlight

Cindy regal.
November 11, 2020: JILA Fellow Cindy Regal Named Baur/SPIE Endowed Chair in Optics and Photonics

Regal is the first recipient for JILA's new endowed chair in optics and photonics.


Read More
JILA building
August 26, 2020: New $115 Million Quantum Systems Accelerator to Pioneer Quantum Technologies for Discovery Science

A new national quantum research center draws on JILA Fellows' and their expertise to make the United States an international leader in quantum technology.


Read More
Thumbnail
July 24, 2020: JILA Fellow Cindy Regal Wins 2020 FRED Award

JILA Fellow Cindy Regal has been selected as the 2020 recipient of Research Corporation for Science Advancement’s Cottrell Frontiers in Research Excellence and Discovery (FRED) Award. The $250,000 FRED Award recognizes and rewards innovative research that could transform an area of science.


Read More
2D Membrane illustration.
December 29, 2019: 2D membrane phononic crystals for force sensing

Analysis and new designs of low mass SiN mechanical defects in 2D acoustic shields for force sensing -- now published in Physical Review Applied.


Read More

JILA Address

We are located at JILA: A joint institute of NIST and the University of Colorado Boulder.

Map | JILA Phone: 303-492-7789 | Address: 440 UCB, Boulder, CO 80309