Atomic & Molecular Physics

JILA makes major contributions to the field of atomic and molecular physics through the study of the properties, behavior, and interactions of cold and ultracold atoms and molecules. JILA physicists have harnessed abilities to manipulate single atoms and control the interactions of many atoms. They have also made significant advances towards building molecules from ultracold atoms, and cooling existing molecules to the ultracold regime.

Ultracold atoms and molecules comprise novel forms of matter that exist at temperatures below a few millionths of a degree above absolute zero, where the laws of quantum mechanics dominate.
The fields of atomic and molecular physics have enjoyed explosive growth in recent decades because of the ability of theory to accurately describe observed phenomena and give predictive support to experiments. Because JILA physicists tackle atomic and molecular physics from both the theoretical and experimental sides, we have revolutionized and continue to lead these fields.

Researchers in Atomic & Molecular Physics

Photograph of Dana Anderson Dana Z. Anderson
Focus: Quantum Sensors, Precision Measurement Role: Experimentalist
Photograph of Andreas Becker Andreas Becker
Focus: Ultrafast Phenomena, Attosecond Dynamics, Coherent Control Role: Theorist
Photograph of John Bohn John Bohn
Focus: Cold Molecules, Quantum Many-body Systems Role: Theorist
Photograph of Eric Cornell. Eric Cornell
Focus: BEC, Precision Measurement, Molecules, Frequency Combs Role: Experimentalist
Photograph of Daniel Dessau. Daniel Dessau
Focus: Spectroscopist studying electronic structure, magnetic structure, and phase transitions of novel materials systems Role: Experimentalist
Photograph of Agnieszka Jaron-Becker Agnieszka Jaron-Becker
Focus: Theoretical AMO, Ultrafast Laser Science Role: Theorist
Photograph of Henry Kapteyn Henry Kapteyn
Focus: Ultrafast Lasers & X-Rays, Imaging, Chemical Physics, Quantum & Optical Science, Nanoscience, Materials, Molecular Science Role: Experimentalist
Photograph of Adam Kaufman Adam Kaufman
Focus: Many-body physics, Ultracold atoms, Quantum simulation Role: Experimentalist
Photograph of David Nesbitt David Nesbitt
Focus: Chemical Physics, Biophysics, Molecular Ions Role: Experimentalist
Photograph of Margaret Murnane Margaret Murnane
Focus: Ultrafast Lasers & X-Rays, Imaging, Chemical Physics, Quantum & Optical Science, Nanoscience, Materials, Molecular Science Role: Experimentalist
Photograph of Cindy Regal Cindy Regal, Baur-SPIE Professor in Optical Physics and Photonics
Focus: Quantum Nanomechanics, Single Atom Trapping Role: Experimentalist
Photograph of Ana Maria Rey Ana Maria Rey
Focus: Cold Atoms and Molecules, Quantum Many-body Systems, Precision Measurement, Quantum Information Role: Theorist
Photograph of Thomas Schibli Thomas Schibli
Focus: Optics and photonics through advanced functional materials, novel laser systems and measurement techniques Role: Experimentalist
Photograph of Graeme Smith Graeme Smith
Focus: Quantum information, Quantum computing Role: Theorist
Photograph of James Thompson James Thompson
Focus: Cold Atoms, Quantum Optics and Information, Precision Measurement Role: Experimentalist
Photograph of Jun Ye Jun Ye
Focus: Cold Atoms and Molecules, Frequency Combs, Ultrastable Lasers, Precision Measurement Role: Experimentalist
Shuo Sun photograph. Shuo Sun
Focus: Quantum Optics; Nanophotonics; Solid-state Quantum Information Processing Role: Experimentalist
Jose D'Incao photo. Jose D'Incao
Focus: few-body atomic systems, ultracold gases Role: Theorist

Recent Highlights in Atomic & Molecular Physics

Dipolar gases have become an increasingly important topic in the field of quantum physics in recent years. These gases consist of atoms or molecules that possess a non-zero electric dipole moment, which gives rise to long-range dipole-dipole interactions between particles. These interactions can lead to a variety of interesting and exotic…

Though microscopes have been in use for centuries, there is still much that we cannot see at the smallest length scales. Current microscopies range from the simple optical microscopes used in high school science classes, to x-ray microscopes that can image through visibly-opaque objects, to electron microscopes that use electrons instead of…

At ultra-cold temperatures, quantum mechanics dictate how particles bump into each other. The collisions depend both on the quantum statistics of the colliding partners (their location within the medium) and on their collisional energy and angular momentum.  The angular momentum of the particles creates an energy barrier, a field of energy that…