Atomic & Molecular Physics

JILA makes major contributions to the field of atomic and molecular physics through the study of the properties, behavior, and interactions of cold and ultracold atoms and molecules. JILA physicists have harnessed abilities to manipulate single atoms and control the interactions of many atoms. They have also made significant advances towards building molecules from ultracold atoms, and cooling existing molecules to the ultracold regime.

Ultracold atoms and molecules comprise novel forms of matter that exist at temperatures below a few millionths of a degree above absolute zero, where the laws of quantum mechanics dominate.
The fields of atomic and molecular physics have enjoyed explosive growth in recent decades because of the ability of theory to accurately describe observed phenomena and give predictive support to experiments. Because JILA physicists tackle atomic and molecular physics from both the theoretical and experimental sides, we have revolutionized and continue to lead these fields.

Researchers in Atomic & Molecular Physics

Photograph of Dana Anderson Dana Z. Anderson
Focus: Quantum Sensors, Precision Measurement Role: Experimentalist
Photograph of Andreas Becker Andreas Becker
Focus: Ultrafast Phenomena, Attosecond Dynamics, Coherent Control Role: Theorist
Photograph of John Bohn John Bohn
Focus: Cold Molecules, Quantum Many-body Systems Role: Theorist
Photograph of Eric Cornell Eric Cornell
Focus: BEC, Precision Measurement, Molecules, Frequency Combs Role: Experimentalist
Placeholder Person Photo Daniel Dessau
Focus: Spectroscopist studying electronic structure, magnetic structure, and phase transitions of novel materials systems Role: Experimentalist
Photograph of Agnieszka Jaron-Becker Agnieszka Jaron-Becker
Focus: Theoretical AMO, Ultrafast Laser Science Role: Theorist
Photograph of Henry Kapteyn Henry Kapteyn
Focus: Ultrafast Lasers & X-Rays, Imaging, Chemical Physics, Quantum & Optical Science, Nanoscience, Materials, Molecular Science
Photograph of Adam Kaufman Adam Kaufman
Focus: Many-body physics, Ultracold atoms, Quantum simulation Role: Experimentalist
Photograph of David Nesbitt David Nesbitt
Focus: Chemical Physics, Biophysics, Molecular Ions Role: Experimentalist
Photograph of Margaret Murnane Margaret Murnane
Focus: Ultrafast Lasers & X-Rays, Imaging, Chemical Physics, Quantum & Optical Science, Nanoscience, Materials, Molecular Science Role: Experimentalist
Photograph of Cindy Regal Cindy Regal
Focus: Quantum Nanomechanics, Single Atom Trapping Role: Experimentalist
Photograph of Ana Maria Rey Ana Maria Rey
Focus: Cold Atoms and Molecules, Quantum Many-body Systems, Precision Measurement, Quantum Information Role: Theorist
Photograph of Thomas Schibli Thomas Schibli
Focus: Optics and photonics through advanced functional materials, novel laser systems and measurement techniques Role: Experimentalist
Photograph of Graeme Smith Graeme Smith
Focus: Quantum information, Quantum computing Role: Theorist
Photograph of James Thompson James Thompson
Focus: Cold Atoms, Quantum Optics and Information, Precision Measurement Role: Experimentalist
Photograph of Jun Ye Jun Ye
Focus: Cold Atoms and Molecules, Frequency Combs, Ultrastable Lasers, Precision Measurement Role: Experimentalist
Shuo Sun photograph. Shuo Sun
Focus: Quantum Optics; Nanophotonics; Solid-state Quantum Information Processing Role: Experimentalist

Recent Highlights in Atomic & Molecular Physics

  • In a significant advance toward the future redefinition of the international unit of time, the second, a research team led by the National Institute of Standards and Technology (NIST) has compared three of the world’s leading atomic clocks with record accuracy over both air and optical fiber links.

  • JILA is the host of multiple centers within its campus. Some are National Science Foundation (NSF) funded and others funded by more private centers. Each center focuses on specific topics to advance the knowledge, education, and research on some of the biggest ideas within physics. 

  • For the first time, researchers can turn on an electric field to manipulate molecular interactions, get them to cool down further, and start to explore collective physics where all molecules are coupled to each other.