Laser Physics

JILA physicists manipulate light to produce ultrashort laser pulses and coherent light sources at exotic wavelengths. As a leading developer of ultrashort laser pulses, JILA researchers have designed pulsed and single ultrashort pulses of light faster than the speed at which molecules form (1 femtosecond, or 10-15 s) and the speed at which electrons move (1 attosecond, or 10-18 s). JILA researchers pioneered the development of tabletop extreme ultraviolet coherent light sources, which opened a new dimension of laser applications.
 
This research explores the complex dance of electrons in matter, and therefore uncovers answers as to how materials bond and how magnetic systems can be manipulated. These studies have a wide breath of applications, including chemistry, biology, material sciences, medicine, telecommunications, and nanotechnology.

Researchers in Laser Physics

Photograph of Andreas Becker Andreas Becker
Focus: Ultrafast Phenomena, Attosecond Dynamics, Coherent Control Role: Theorist
Photograph of Murray Holland Murray Holland
Focus: Quantum Optics, Cold Atoms Role: Theorist
Photograph of Agnieszka Jaron-Becker Agnieszka Jaron-Becker
Focus: Theoretical AMO, Ultrafast Laser Science Role: Theorist
Photograph of Henry Kapteyn Henry Kapteyn
Focus: Ultrafast Lasers & X-Rays, Imaging, Chemical Physics, Quantum & Optical Science, Nanoscience, Materials, Molecular Science Role: Experimentalist
Photograph of Margaret Murnane Margaret Murnane
Focus: Ultrafast Lasers & X-Rays, Imaging, Chemical Physics, Quantum & Optical Science, Nanoscience, Materials, Molecular Science Role: Experimentalist
Markus Raschke Markus Raschke
Focus: Ultrafast Nano-optics, Chemical Physics, Nanoscience Role: Experimentalist
Photograph of Cindy Regal Cindy Regal, Baur-SPIE Professor in Optical Physics and Photonics
Focus: Quantum Nanomechanics, Single Atom Trapping Role: Experimentalist
Photograph of Ana Maria Rey Ana Maria Rey
Focus: Cold Atoms and Molecules, Quantum Many-body Systems, Precision Measurement, Quantum Information Role: Theorist
Photograph of Thomas Schibli Thomas Schibli
Focus: Optics and photonics through advanced functional materials, novel laser systems and measurement techniques Role: Experimentalist
Photograph of James Thompson James Thompson
Focus: Cold Atoms, Quantum Optics and Information, Precision Measurement Role: Experimentalist
Photograph of Jun Ye Jun Ye
Focus: Cold Atoms and Molecules, Frequency Combs, Ultrastable Lasers, Precision Measurement Role: Experimentalist

Recent Highlights in Laser Physics

The hunt was afoot within the laboratory of JILA and NIST Fellow Ralph Jimenez as his team continued to unravel the mystery of entangled two-photon absorption. Entangled photons are pairs of light particles whose quantum states are not independent of each other, so they share aspects of their properties, such as their energies and angular…

Physicists develop some of the most cutting-edge technologies, including new types of lasers, microscopes, and telescopes. Using lasers, physicists can learn more about quantum interactions in materials and molecules by taking snapshots of the fastest processes, and many other things. While lasers have been used for decades, their applications…

There are many ways to diagnose health conditions. One of the most common methods is blood testing. This sort of test can look for hundreds of different kinds of molecules in the body to determine if an individual has any diseases or underlying conditions. Not everyone is a fan of needles, however, which makes blood tests a big deal for some…