Precision Measurement

Precision-measurement tools help scientists understand the universe, often through ground-breaking discoveries.

JILA physicists are at the forefront of efforts to invent and redefine tools for precision measurement. The tools developed at JILA are capable of probing tiny structures inside living cells, monitor the dynamics of chemical reactions, and directly measure the frequency of visible light. 

Historically, precision measurements at JILA helped pave the way for redefining the speed the light, defining the gravitational constant, and develop a universal constant time-keeping system. Current research into precision measurements at JILA could redefine the standard model of physics, realize the quantization of gravity, detect the astronomical collisions of black holes, search for evidence of dark matter, and even evolve our understanding of DNA and proteins, and the subsequent diseases that develop from their misfoldings.

Researchers in Precision Measurement

Photograph of Dana Anderson Dana Z. Anderson
Focus: Quantum Sensors, Precision Measurement Role: Experimentalist
Photograph of Eric Cornell. Eric Cornell
Focus: BEC, Precision Measurement, Molecules, Frequency Combs Role: Experimentalist
Photograph of Murray Holland Murray Holland
Focus: Quantum Optics, Cold Atoms Role: Theorist
Photograph of Konrad Lehnert. Konrad Lehnert
Focus: Quantum Nanomechanics, Microwave Quantum Optics, Mesoscopic Physics Role: Experimentalist
Photograph of Judah Levine Judah Levine
Focus: Methods for distributing precise time and frequency information Role: Experimentalist
Photograph of Ana Maria Rey Ana Maria Rey
Focus: Cold Atoms and Molecules, Quantum Many-body Systems, Precision Measurement, Quantum Information Role: Theorist
Photograph of James Thompson James Thompson
Focus: Cold Atoms, Quantum Optics and Information, Precision Measurement Role: Experimentalist
Photograph of Jun Ye Jun Ye
Focus: Cold Atoms and Molecules, Frequency Combs, Ultrastable Lasers, Precision Measurement Role: Experimentalist

Recent Highlights in Precision Measurement

Opening new possibilities for quantum sensors, atomic clocks and tests of fundamental physics, JILA researchers have developed new ways of “entangling” or interlinking the properties of large numbers of particles. In the process they have devised ways to measure large groups of atoms more accurately even in disruptive, noisy environments. …

In a recent Science paper, researchers led by JILA and NIST Fellow Jun Ye, along with collaborators JILA and NIST Fellow David Nesbitt, scientists from the University of Nevada, Reno, and Harvard University, observed novel ergodicity-breaking in C60, a highly symmetric…

Some of the biggest questions about our universe may be solved by scientists using its tiniest particles. Since the 1960s, physicists have been looking at particle interactions to understand an observed imbalance of matter and antimatter in the universe. Much of the work has focused on interactions that violate charge and parity (CP) symmetry.…