Precision Measurement

Precision-measurement tools help scientists understand the universe, often through ground-breaking discoveries.

JILA physicists are at the forefront of efforts to invent and redefine tools for precision measurement. The tools developed at JILA are capable of probing tiny structures inside living cells, monitor the dynamics of chemical reactions, and directly measure the frequency of visible light. 

Historically, precision measurements at JILA helped pave the way for redefining the speed the light, defining the gravitational constant, and develop a universal constant time-keeping system. Current research into precision measurements at JILA could redefine the standard model of physics, realize the quantization of gravity, detect the astronomical collisions of black holes, search for evidence of dark matter, and even evolve our understanding of DNA and proteins, and the subsequent diseases that develop from their misfoldings.

Researchers in Precision Measurement

Photograph of Dana Anderson Dana Z. Anderson
Focus: Quantum Sensors, Precision Measurement Role: Experimentalist
Photograph of Eric Cornell. Eric Cornell
Focus: BEC, Precision Measurement, Molecules, Frequency Combs Role: Experimentalist
Photograph of Murray Holland Murray Holland
Focus: Quantum Optics, Cold Atoms Role: Theorist
Photograph of Konrad Lehnert. Konrad Lehnert
Focus: Quantum Nanomechanics, Microwave Quantum Optics, Mesoscopic Physics Role: Experimentalist
Photograph of Judah Levine Judah Levine
Focus: Methods for distributing precise time and frequency information Role: Experimentalist
Photograph of Ana Maria Rey Ana Maria Rey
Focus: Cold Atoms and Molecules, Quantum Many-body Systems, Precision Measurement, Quantum Information Role: Theorist
Photograph of James Thompson James Thompson
Focus: Cold Atoms, Quantum Optics and Information, Precision Measurement Role: Experimentalist
Photograph of Jun Ye Jun Ye
Focus: Cold Atoms and Molecules, Frequency Combs, Ultrastable Lasers, Precision Measurement Role: Experimentalist

Recent Highlights in Precision Measurement

The interactions between quantum spins underlie some of the universe’s most interesting phenomena, such as superconductors and magnets. However, physicists have difficulty engineering controllable systems in the lab that replicate these interactions.

Now, in a recently published…

An international team of researchers, led by JILA and NIST Fellow and University of Colorado Boulder Physics Professor Jun Ye and his team, has made significant strides in developing a groundbreaking timekeeping device known as a nuclear clock. Their results have been published in the…

In the quiet halls of the Duane Physics building at the University of Colorado Boulder, two JILA researchers, postdoctoral research associate Catie LeDesma and graduate student Kendall Mehling, combine machine learning with atom interferometry to create the next generation of quantum sensors. Because these quantum sensors can be applied to…