Research Highlights

Displaying 161 - 180 of 479
Laser Physics | Nanoscience
The Electron Stops When The Bands Play On
Published:

The Kapteyn-Murnane group has come up with a novel way to use fast bursts of extreme ultraviolet light to capture how strongly electrons interact with each other in materials. This research is important for figuring out how quickly materials can change their state from insulating to conducting, or from magnetic to nonmagnetic. In the future such fast switching may lead to faster and more efficient nanoelectronics.

Read More
PI(s):
Henry Kapteyn | Margaret Murnane
Atomic & Molecular Physics
The Ties That Bind
Published:

JILA and NIST scientists are hot on the trail of understanding quantum correlations (or entanglement) among groups of quantum particles such as atoms or ions. Such particles are the building blocks of larger and larger chunks of matter that make up the everyday world. Interestingly, correlated atoms and ions exhibit exotic behaviors and accomplish tasks that are impossible for noninteracting particles. Therefore, understanding how entanglement is generated in those systems is not only central to comprehending our world, but also advancing technology.

Read More
PI(s):
Ana Maria Rey
Precision Measurement
The Chameleon Interferometer
Published:

The Regal group recently met the challenge of measurements in an extreme situation with a device called an interferometer. The researchers succeeded by using creative alterations to the device itself and quantum correlations. Quantum correlations are unique, and often counterintuitive, quantum mechanical interactions that occur among quantum objects such as photons and atoms. The group exploited these interactions in the way they set up their interferometer, and improved its ability to measure tiny motions using photons (particles of light).

Read More
PI(s):
Cindy Regal | Konrad Lehnert
Precision Measurement
The Hunt Is On For The Axion
Published:

The first results are in from a new search for the axion, a hypothetical particle that may constitute dark matter. Researchers in the Haloscope At Yale Sensitive to Axion Cold Dark Matter (HAYSTAC) recently looked for evidence of the axion, but so far they have found none in the small 100 MHz frequency range between 5.7 and 5.8 GHz.

Read More
PI(s):
Konrad Lehnert
Laser Physics | Nanoscience
The Sharpest Images
Published:

Dennis Gardner and his coworkers in the Kapteyn-Murnane group accomplished two major breakthroughs in imaging tiny structures much too small to be seen with visible light microscopes: (1) for the first time in the extreme ultraviolet (EUV) or soft X-ray region, they achieved a resolution smaller than the wavelength of the light; and (2) for the first time, they obtained high resolution quantitative imaging of near periodic tiny objects (structures with repetitive features).

Read More
PI(s):
Henry Kapteyn | Margaret Murnane
Astrophysics
The Fast and the Furious
Published:

The lovely Crab Nebula was created by a supernova and its spinning-neutron-star remnant known as a pulsar. Pulsar wind nebulae, such as the Crab, shine because they contain plasmas of charged particles, such as electrons and positrons, traveling at near the speed of light. A key question in astrophysics has long been: What process accelerates some of the charged particles in plasmas to energies much higher than the average particle energy, giving them near light speeds?

Read More
PI(s):
Mitch Begelman
Biophysics
Vision Quest
Published:

The Perkins group continues to extend the performance of its unique Atomic Force Microscope (AFM) technology, revealing for the first time a dozen new short-lived intermediate states in the folding and unfolding of a membrane protein that controls the exchange of chemicals and ions into and out of living cells. Measuring the energetics and dynamics of membrane proteins is crucial to understanding normal physiology and disease, and the Perkins group’s observation of multiple new folding/unfolding states shines new light on these cellular “gatekeepers.”

Read More
PI(s):
Thomas Perkins
Atomic & Molecular Physics | Precision Measurement
Quantum Leaps
Published:

In the Ye group’s new quantum simulation experiment, cold strontium atoms, which are analogs of electrons, are allowed to tunnel between the pancakes that confine the atoms with laser light. Because the atoms moving in an array of pancakes are analogs of electrons moving in solids, such studies are expected to shed light on the complex physics of metals and other solids. Credit:  The Ye group and Steve Burrows, JILA

Read More
PI(s):
Ana Maria Rey | Jun Ye
Atomic & Molecular Physics
Molecules at the Quantum Frontier
Published:

Deborah Jin, Jun Ye, and their students wrote a review during the summer of 2016 for Nature Physics highlighting the accomplishments and future directions of the relatively new field of ultracold-molecule research. The field was pioneered by the group’s creation of the world’s first gas of ultracold potassium-rubidium (KRb) molecules in 2008.

Read More
PI(s):
Deborah Jin | Jun Ye
Astrophysics
Star Model
Published:

Astrophysicist Jeff Linsky and his colleagues recently created a sophisticated mathematical model of the outer atmosphere of the small M-dwarf star called GJ832. The new model fits well with spectral observations of the star made with the Hubble Space Telescope (HST). This accomplishment bodes well for two reasons: First, it provides a tool for better understanding M-dwarf stars––the most common type of star in our galaxy.

Read More
PI(s):
Jeffrey Linsky
Atomic & Molecular Physics | Quantum Information Science & Technology
The Beautiful Ballet of Quantum Baseball
Published:

The Rey and Ye groups discovered the strange rules of quantum baseball earlier this year. But now, quantum baseball games happen faster, and players (dipolar particles) are no longer free to move or stand wherever they want. Players must not only be stronger to jump and catch the balls (photons), but also more organized. At the same time, they must be good spinners. And, only a small amount of disorder is tolerated! The fast spinning of the players and their fixed positions have made quantum baseball a whole new game!

Read More
PI(s):
Ana Maria Rey
Astrophysics
Dancing with the Stars
Published:

Galaxy mergers routinely occur in our Universe. And, when they take place, it takes years for the supermassive black holes at their centers to merge into a new, bigger supermassive black hole. However, a very interesting thing can happen when two black holes get close enough to orbit each other every 3–4 months, something that happens just before the two black holes begin their final desperate plunge into each other. 

Read More
PI(s):
Mitch Begelman | Phil Armitage
Chemical Physics
Recreating Fuels from Waste Gas
Published:

Graduate student Mike Thompson of the Weber group wants to understand the basic science of taking carbon dioxide (CO2) produced by burning fossil fuels and converting it back into useful fuels. People could then use these fuels to generate electricity, heat homes and office buildings, power automobiles and trains, fly airplanes, and drive the industrial processes of modern life.

Read More
PI(s):
J. Mathias Weber
Atomic & Molecular Physics
Going Viral: The Source of a Spin-Flip Epidemic
Published:

For a long time, there’s been a mystery concerning how tiny interactions between individual atoms could lead to really big changes in a whole cloud of independent-minded particles. The reason this behavior is mysterious is that the atoms interact weakly, and only when they are very close to each other. Yet, the atoms clear across the cloud seem to know when it’s time to participate in some big-deal quantum behavior such as simultaneously all changing the direction of their spins.

Read More
PI(s):
Ana Maria Rey
Biophysics
The Red Light District
Published:

Far-red fluorescent light emitted from proteins could one day illuminate the inner workings of life. But before that happens, scientists like Fellow Ralph Jimenez must figure out how fluorescent proteins’ light-emitting structures work. As part of this effort, Jimenez wants to answer a simple question: How do we design red fluorescent proteins to emit longer-wavelength, or redder, light?

Read More
PI(s):
Ralph Jimenez
Atomic & Molecular Physics | Chemical Physics | Laser Physics
The Radical Comb-Over
Published:

Using frequency comb spectroscopy, the Ye group has directly observed transient intermediate steps in a chemical reaction that plays a key role in combustion, atmospheric chemistry, and chemistry in the interstellar medium. The group was able to make this first-ever measurement because frequency combs generate a wide range of laser wavelengths in ultrafast pulses. These pulses made it possible for the researchers to “see” every step in the chemical reaction of OH + CO → HOCO → CO2 + H.

Read More
PI(s):
Jun Ye
Laser Physics
A Quantum Metal Model System
Published:

Exciting new theory from the Rey group reveals the profound effects of electron interactions on the flow of electric currents in metals. Controlling currents of strongly interacting electrons is critical to the development of tomorrow’s advanced microelectronics systems, including spintronics devices that will process data faster, use less power than today’s technology, and operate in conditions where quantum effects predominate.

Read More
PI(s):
Ana Maria Rey
Chemical Physics
The Ultimate Radar Detector
Published:

The Nesbitt group has invented a nifty technique for exploring the physics and chemistry of a gas interacting with molecules on the surface of a liquid. The group originally envisioned the technique because it’s impossible to overestimate the importance of understanding surface chemistry. For instance, ozone depletion in the atmosphere occurs because of chemical reactions of hydrochloric acid on the surface of ice crystals and aerosols in the upper atmosphere. Interstellar chemistry takes place on the surface of tiny grains of dust.

Read More
PI(s):
David Nesbitt
Astrophysics
Black Holes Can Have Their Stars and Eat Them Too
Published:

Fellow Mitch Begelman’s new theory says it’s possible to form stars while a supermassive black hole consumes massive amounts of stellar debris and other interstellar matter. What’s more, there’s evidence that this is exactly what happened around the black hole at the center of the Milky Way some 4–6 million years ago, according to Associate Fellow Ann-Marie Madigan.

Read More
PI(s):
Mitch Begelman
Astrophysics
Black Hole Marvels
Published:

Graduate student Greg Salvesen, JILA Collaborator Jake Simon (Southwest Research Institute), and Fellows Phil Armitage and Mitch Begelman decided they wanted to figure out why swirling disks of gas (accretion disks) around black holes often appear strongly magnetized. They also wanted to figure out the mechanism that allowed this magnetization to persist over time.

Read More
PI(s):
Mitch Begelman | Phil Armitage