Precision Measurement

Precision-measurement tools help scientists understand the universe, often through ground-breaking discoveries.

JILA physicists are at the forefront of efforts to invent and redefine tools for precision measurement. The tools developed at JILA are capable of probing tiny structures inside living cells, monitor the dynamics of chemical reactions, and directly measure the frequency of visible light. 

Historically, precision measurements at JILA helped pave the way for redefining the speed the light, defining the gravitational constant, and develop a universal constant time-keeping system. Current research into precision measurements at JILA could redefine the standard model of physics, realize the quantization of gravity, detect the astronomical collisions of black holes, search for evidence of dark matter, and even evolve our understanding of DNA and proteins, and the subsequent diseases that develop from their misfoldings.

Researchers in Precision Measurement

Photograph of Dana Anderson Dana Z. Anderson
Focus: Quantum Sensors, Precision Measurement Role: Experimentalist
Photograph of Eric Cornell. Eric Cornell
Focus: BEC, Precision Measurement, Molecules, Frequency Combs Role: Experimentalist
Photograph of Murray Holland Murray Holland
Focus: Quantum Optics, Cold Atoms Role: Theorist
Photograph of Ana Maria Rey Ana Maria Rey
Focus: Cold Atoms and Molecules, Quantum Many-body Systems, Precision Measurement, Quantum Information Role: Theorist
Photograph of James Thompson James Thompson
Focus: Cold Atoms, Quantum Optics and Information, Precision Measurement Role: Experimentalist
Photograph of Jun Ye Jun Ye
Focus: Cold Atoms and Molecules, Frequency Combs, Ultrastable Lasers, Precision Measurement Role: Experimentalist

Recent Highlights in Precision Measurement

JILA researchers have taken a major step toward realizing next‑generation nuclear clocks by studying how thorium‑doped crystals behave over time. In new experiments published in Nature, the team tracked the stability, temperature response, and reproducibility of three calcium‑fluoride crystals containing different concentrations of…

For the past several years, an experimental research group led by JILA Fellow James Thompson and a theoretical research group led by JILA Fellow Ana Maria Rey have been working together to study quantum interactions using cavity quantum electrodynamics (cavity QED)—the…

In a new study, researchers led by JILA and NIST Fellow Jun Ye have shown how to make atomic clocks even more precise by leveraging entanglement. This allows the atoms to “tick” more in sync, reducing the randomness that usually limits how precisely we can measure time. 

Their results show that it’s possible to go beyond what’s…