Research Highlights

Precision Measurement
Sky Clocks and the World of Tomorrow
Thumbnail
Published:

Imagine a network of multiple clocks orbiting the Earth, not only reporting down to us, but also collaborating quantum mechanically among themselves to operate precisely in sync as a single global superclock, or world clock. The world clock is delivering the most precise timekeeping in all of human history—to every member nation regardless of politics, alliances, or behavior on the ground. Moreover, the world clock itself is virtually immune to sabotage and can peer under the surface of the Earth to uncover its detailed composition or out into space to reveal a better understanding of fundamental physical principles such as quantum mechanics and gravity. 

PI: Jun Ye
Read More
Atomic & Molecular Physics
Dealing with Loss
Thumbnail
Published:

There’s exciting news from JILA’s ultracold molecule collaboration. The Jin, Ye, Holland, and Rey groups have come up with new theory (verified by experiment) that explains the suppression of chemical reactions between potassium-rubidium (KRb) molecules in the KRb quantum simulator. The main reason the molecules do not collide and react is continuous measurement of molecule loss from the simulator.

PI: Ana Maria Rey | PI: Deborah Jin | PI: Jun Ye | PI: Murray Holland
Read More
Atomic & Molecular Physics
A Clockwork Blue Takes the Gold
Thumbnail
Published:

JILA and NIST labs are well on the way to creating astonishingly accurate optical atomic clocks based on the neutral atoms strontium (Sr) and ytterbium (Yb). The new technologies are already capable of the most meticulous timekeeping in human history.

PI: Jun Ye
Read More
Precision Measurement
The Dipolar Express
Thumbnail
Published:

Physicists wonder about some pretty strange things. For instance, one burning question is: How round is the electron? While the simplest picture of the electron is a perfect sphere, it is possible that it is instead shaped like an egg. The egg shape would look a bit like a tiny separation of positive and negative charges. Physicists call this kind of charge separation an electric dipole moment, or EDM. The existence of an EDM in the electron or any other subatomic particle will have a profound impact on our understanding of the fundamental laws of physics. 

PI: Eric Cornell | PI: John Bohn | PI: Jun Ye
Read More
Atomic & Molecular Physics
The Great Spin Swap
Thumbnail
Published:

Research associate Bo Yan and his colleagues recently observed spin exchanges in ultracold potassium-rubidium (KRb) molecules inside an optical lattice (a crystal of light formed by interacting laser beams). In solid materials, such spin exchanges are the building blocks of advanced materials and exotic behavior.

PI: Ana Maria Rey | PI: Deborah Jin | PI: Jun Ye
Read More
Quantum Information Science & Technology
The Magnificent Quantum Laboratory
Thumbnail
Published:

Because quantum mechanics is crucial to understanding the behavior of everything in the Universe, one can understand key elements of the behavior of a neutron star by investigating the behavior of an atomic system in the laboratory. This is the promise of the new quantum simulator in the Ye labs. It is a fully controllable quantum system that is being used as a laboratory to study the behavior of other less controllable and more poorly understood quantum systems.

PI: Ana Maria Rey | PI: Jun Ye
Read More
Atomic & Molecular Physics
Trapper Marmot and the Stone Cold Molecules
Thumbnail
Published:

The Ye group has opened a new gateway into the relatively unexplored terrain of ultracold chemistry. Research associate Matt Hummon, graduate students Mark Yeo and Alejandra Collopy, newly minted Ph.D. Ben Stuhl, Fellow Jun Ye, and a visiting colleague Yong Xia (East China Normal University) have built a magneto-optical trap (MOT) for yttrium oxide (YO) molecules. The two-dimensional MOT uses three lasers and carefully adjusted magnetic fields to partially confine, concentrate, and cool the YO molecules to transverse temperatures of ~2 mK. It is the first device of its kind to successfully laser cool and confine ordinary molecules found in nature.

PI: Jun Ye
Read More
Atomic & Molecular Physics
The Big Chill
Thumbnail
Published:

The Ye and Bohn groups have made a major advance in the quest to prepare “real-world” molecules at ultracold temperatures. As recently reported in Nature, graduate students Ben Stuhl and Mark Yeo, research associate Matt Hummon, and Fellow Jun Ye succeeded in cooling hydroxyl radical molecules (*OH) down to temperatures of no more than five thousandths of a degree above absolute zero (5mK).

PI: John Bohn | PI: Jun Ye
Read More
Precision Measurement
The Most Stable Clock in the World
Thumbnail
Published:

The world’s most stable optical atomic clock resides in the Ye lab in the basement of JILA’s S-Wing. The strontium-(Sr-)lattice clock is so stable that its frequency measurements don’t vary by more than 1 part in 100 quadrillion (1 x 10-17) over a time period of 1000 seconds, or 17 minutes.

PI: Jun Ye
Read More
Precision Measurement
New Silicon Cavity Silences Laser Noise
Thumbnail
Published:

Researchers from a German national laboratory, the Physikalisch-Technische Bundesanstalt (PTB) have collaborated with Fellow Jun Ye, Visiting Fellow Lisheng Chen (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences), and graduate student Mike Martin to come up with a clever approach to reducing heat-related “noise” in interferometers. 

PI: Jun Ye
Read More
Laser Physics
The Indomitable Ruler of Light
Thumbnail
Published:

The Ye group has created the world’s first “ruler of light” in the extreme ultraviolet (XUV). The new ruler is also known more formally as the XUV frequency comb. The comb consists of hundreds of equally spaced “colors” that function in precision measurement like the tics on an ordinary ruler. The amazing thing about this ruler is that XUV colors have such short wavelengths they aren’t even visible to the human eye. The wavelengths of the XUV colors range from about 120 nm to about 50 nm — far shorter than the shortest visible light at 400 nm. “Seeing” the colors in the XUV ruler requires special instruments in the laboratory. With these instruments, the new ruler is opening up whole new vistas of research.

PI: Jun Ye
Read More
Atomic & Molecular Physics
Ultracold Polar Molecules to the Rescue!
Thumbnail
Published:

Physicists would very much like to understand the physics underlying high-temperature superconductors. Such an understanding may lead to the design of room temperature superconductors for use in highly efficient and much lower-cost transmission networks for electricity. A technological breakthrough like this would drastically reduce world energy costs. However, this breakthrough requires a detailed understanding of the physics of high-temperature superconductivity.

PI: Ana Maria Rey | PI: Jun Ye
Read More
Atomic & Molecular Physics
The Cold Case
Thumbnail
Published:

The Ye group has built a cool new system for studying cold collisions between molecules. The system is far colder than a typical chemistry experiment that takes place at room temperature or hotter (300–500 K). But, it’s also much warmer than experiments that investigate ultracold-molecule collisions conducted at hundreds of billionths of a degree above absolute zero (0 K). The new system is known as “the cold molecule experiment” and operates at temperatures of approximately 5 K (-450 °F).

PI: Jun Ye
Read More
Quantum Information Science & Technology
The Quantum Control Room
Thumbnail
Published:

In 2008, the Ye and Jin groups succeeded in making ultracold potassium-rubidium (KRb) molecules in their ground state (See “Redefining Chemistry at JILA” in the Spring 2010 issue of JILA Light & Matter). Their next goal was to figure out how to precisely control chemical reactions of these ultracold polar molecules by manipulating the quantum states of the reactants. But first the researchers had to discover how to calm those reactions down enough to study them. Under the conditions in which they were made (an optical trap allowing motion in all three dimensions), ultracold KRb molecules were so chemically reactive they disappeared almost as soon as they were formed.

PI: Deborah Jin | PI: John Bohn | PI: Jun Ye
Read More
Precision Measurement
Strontium Clock Performance Skyrockets
Thumbnail
Published:

In 2008-2009, much to their amazement,researchers working on the Jun Ye group’s neutral Sr optical atomic clock discovered tiny frequency shifts caused by colliding fermions! They figured out that the clock laser was interacting slightly differently with the Sr atoms inside a one-dimensional (pancake-shaped) trap. The light-atom interactions resulted in the atoms no longer being identical. And, once they were distinguishable, formerly unneighborly atoms were able to run into each other, compromising clock performance.

PI: Ana Maria Rey | PI: Jun Ye
Read More
Quantum Information Science & Technology
The Quantum Modeling Agency
Thumbnail
Published:

“Nature is built quantum mechanically,” says Fellow Jun Ye, who wants to understand the connections between atoms and molecules in complex systems such as liquids and solids (aka condensed matter). He says that the whole Universe is made of countless interacting particles, and it would be impossible to figure out the myriad connections between them one particle at a time, either theoretically or experimentally.

PI: Ana Maria Rey | PI: Jun Ye
Read More
Atomic & Molecular Physics
Deciphering Nature's Fingerprints
Thumbnail
Published:

Fellow Jun Ye’s group has enhanced the molecular fingerprinting technique with the development of a mid-infrared (mid-IR) frequency comb.  The new rapid-detection technique can now identify traces of a wider variety of molecules found in mixtures of gases. It offers many advantages for chemical analysis of the atmosphere, climate science studies, and the detection of suspicious substances.

PI: Jun Ye
Read More
Atomic & Molecular Physics
Redefining Chemistry at JILA
Thumbnail
Published:

Fellows Deborah Jin, Jun Ye, and John Bohn are exploring new scientific territory in cold-molecule chemistry. Experimentalists Jin and Ye and their colleagues can now manipulate, observe, and control ultralow-temperature potassium-rubidium (KRb) molecules in their lowest quantum-mechanical state. Theorist Bohn analyzes what the experimentalists see and predicts molecule behaviors under different conditions.

PI: Deborah Jin | PI: Jun Ye | PI: Konrad Lehnert
Read More
Atomic & Molecular Physics
Freeze Frame
Thumbnail
Published:

The cold-molecule collaboration has developed a method for directly imaging ultracold ground-state KRb molecules. Their old method required the transfer of ultracold KRb molecules into a Feshbach state, which is sensitive to electric and magnetic fields. Thus researchers had to turn off the electric field and keep the magnetic field at a fixed value during the imaging process.

PI: Deborah Jin | PI: Jun Ye
Read More
Precision Measurement
Fermions in Collision?
Thumbnail
Published:

According to the laws of quantum mechanics, identical fermions at very low temperatures can’t collide. These unfriendly subatomic particles, atoms, or molecules simply will not share the same piece of real estate with an identical twin. A few years back, researchers in the Ye lab considered this unneighborly behavior a big advantage in designing a new optical atomic clock based on an ensemble of identical 87Sr atoms. 

PI: Jun Ye
Read More