Research Highlights

Precision Measurement
And, The Answer Is . . . Still Round
Thumbnail
Published:

Why are we here? This is an age-old philosophical question. However, physicists like Will Cairncross, Dan Gresh and their advisors Eric Cornell and Jun Ye actually want to figure out out why people like us exist at all. If there had been the same amount of matter and antimatter created in the Big Bang, the future of stars, galaxies, our Solar System, and life would have disappeared in a flash of light as matter and antimatter recombined.

PI: Eric Cornell | PI: Jun Ye
Read More
Atomic & Molecular Physics | Precision Measurement
The Clock that Changed the World
Thumbnail
Published:

Imagine A Future . . . The International Moon Station team is busy on the Moon’s surface using sensitive detectors of gravity and magnetic and electric fields looking for underground water-rich materials, iron-containing ores, and other raw materials required for building a year-round Moon station. The station’s mission: launching colonists and supplies to Mars for colonization. Meanwhile, back on Earth, Americans are under simultaneous assault by three Category 5 hurricanes, one in the Gulf of Mexico and two others threatening the Caribbean islands. Hundreds of people are stranded in the rising waters, but thanks precision cell-phone location services and robust cell-tower connections in high wind, their rescuers are able to accurately pinpoint their locations and send help immediately.

PI: Jun Ye
Read More
Atomic & Molecular Physics
Quantum Adventures with Cold Molecules
Thumbnail
Published:

Researchers at JILA and around the world are starting a grand adventure of precisely controlling the internal and external quantum states of ultracold molecules after years of intense experimental and theoretical study. Such control of small molecules, which are the most complex quantum systems that can currently be completely understood from the principles of quantum mechanics, will allow researchers to probe the quantum interactions of individual molecules with other molecules, investigate what happens to molecules during collisions, and study how molecules behave in chemical reactions. 

PI: Ana Maria Rey | PI: John Bohn | PI: Jun Ye
Read More
Atomic & Molecular Physics | Precision Measurement
Quantum Leaps
Thumbnail
Published:

In the Ye group’s new quantum simulation experiment, cold strontium atoms, which are analogs of electrons, are allowed to tunnel between the pancakes that confine the atoms with laser light. Because the atoms moving in an array of pancakes are analogs of electrons moving in solids, such studies are expected to shed light on the complex physics of metals and other solids. Credit:  The Ye group and Steve Burrows, JILA

PI: Ana Maria Rey | PI: Jun Ye
Read More
Atomic & Molecular Physics
Molecules at the Quantum Frontier
Thumbnail
Published:

Deborah Jin, Jun Ye, and their students wrote a review during the summer of 2016 for Nature Physics highlighting the accomplishments and future directions of the relatively new field of ultracold-molecule research. The field was pioneered by the group’s creation of the world’s first gas of ultracold potassium-rubidium (KRb) molecules in 2008.

PI: Deborah Jin | PI: Jun Ye
Read More
Atomic & Molecular Physics | Chemical Physics | Laser Physics
The Radical Comb-Over
Thumbnail
Published:

Using frequency comb spectroscopy, the Ye group has directly observed transient intermediate steps in a chemical reaction that plays a key role in combustion, atmospheric chemistry, and chemistry in the interstellar medium. The group was able to make this first-ever measurement because frequency combs generate a wide range of laser wavelengths in ultrafast pulses. These pulses made it possible for the researchers to “see” every step in the chemical reaction of OH + CO → HOCO → CO2 + H.

PI: Jun Ye
Read More
Atomic & Molecular Physics
Stalking the Wild Molecules
Thumbnail
Published:

The Ye group just solved a major problem for using molecular fingerprinting techniques to identify large, complex molecules: The researchers used an infrared (IR) frequency comb laser to identify four different large or complicated molecules. The IR laser-light absorption technique worked well for the first time with these larger molecules because the group combined it with buffer gas cooling, which precooled their samples to just a few degrees above absolute zero. 

PI: Jun Ye
Read More
Atomic & Molecular Physics
The Ultramodern Molecule Factory: I. Doublons
Thumbnail
Published:

The old JILA molecule factory (built in 2002) produced the world’s first ultracold polar molecules [potassium-rubidium (KRb)] in 2008. The old factory has been used since then for ultracold chemistry investigations and studies of the quantum behavior of ultracold molecules and the atoms that form them. The Jin-Ye group, which runs the molecule factory, is now wrapping up operations in the old factory with experiments designed to improve operations in the ultramodern factory, which is close to completion.

PI: Ana Maria Rey | PI: Deborah Jin | PI: Jun Ye
Read More
Atomic & Molecular Physics | Precision Measurement
Quantum Baseball
Thumbnail
Published:

The Ye and Rey groups have discovered the strange rules of quantum baseball in which strontium (Sr) atoms are the players, and photons of light are the balls. The balls control the players by not only getting the atoms excited, but also working together. The players coordinate throwing and catching the balls. While this is going on, the balls can change the state of the players! Sometimes the balls even escape the quantum baseball game altogether and land on detectors in the laboratory.

PI: Ana Maria Rey | PI: Jun Ye
Read More
Atomic & Molecular Physics | Quantum Information Science & Technology
Creative Adventures in Coupling
Thumbnail
Published:

The Rey and Ye groups are in the midst of an extended collaboration on using the Ye group’s strontium (Sr) lattice clock for studies of spin-orbit coupling in pancake-like layers of cold Sr atoms. Spin-orbit coupling means an atom’s motion is correlated with its spin. It occurs in everyday materials when negatively charged electrons move in response to electromagnetic fields inside a crystal.

PI: Ana Maria Rey | PI: Jun Ye
Read More
Atomic & Molecular Physics
A Thousand Splendid Pairs
Thumbnail
Published:

JILA’s cold molecule collaboration (Jin and Ye Groups, with theory support from the Rey Group) recently made a breakthrough in its efforts to use ultracold polar molecules to study the complex physics of large numbers of interacting quantum particles. By closely packing the molecules into a 3D optical lattice (a sort of “crystal of light”), the team was able to create the first “highly degenerate” gas of ultracold molecules.

PI: Ana Maria Rey | PI: Deborah Jin | PI: Jun Ye
Read More
Precision Measurement
About Time
Thumbnail
Published:

The Ye group has just improved the accuracy of the world’s best optical atomic clock by another factor of three and set a new record for clock stability. The accuracy and stability of the improved strontium lattice optical clocks is now about 2 x 10-18, or the equivalent of not varying from perfect time by more than one second in 15 billion years—more than the age of the Universe. Clocks like the Ye Group optical lattice clocks are now so exquisitely precise that they may have outpaced traditional applications for timekeeping such as navigation (GPS) and communications.

PI: Jun Ye
Read More
Atomic & Molecular Physics
A Bug’s Life
Thumbnail
Published:

The Ye Group recently investigated what first appeared to be a “bug” in an experiment and made an unexpected discovery about a new way to generate high-harmonic light using molecular gases rather than gases of noble atoms. Graduate student Craig Benko and his colleagues in the Ye group were studying the interaction of light from an extreme ultraviolet (XUV) frequency comb with molecules of nitrous oxide, or laughing gas (N2O), when they noticed unusual perturbations in the laser spectrum.

PI: Jun Ye
Read More
Atomic & Molecular Physics
Atoms, Atoms, Frozen Tight in the Crystals of the Light, What Immortal Hand or Eye Could Frame Thy Fearful Symmetry?
Thumbnail
Published:

Symmetries described by SU(N) group theory made it possible for physicists in the 1950s to explain how quarks combine to make protons and neutrons and JILA theorists in 2013 to model the behavior of atoms inside a laser. Now, the Ye group has observed a manifestation of SU(N≤10) symmetry in the magnetic behavior of strontium-87 (87Sr) atoms trapped in crystals of light created by intersecting laser beams inside a quantum simulator (originally developed as an optical atomic clock).

PI: Ana Maria Rey | PI: Jun Ye
Read More
Laser Physics | Precision Measurement
Invisible Rulers of Light
Thumbnail
Published:

The Ye group has not only made two invisible rulers of extreme ultraviolet (XUV) light, but also figured out how to observe them with ordinary laboratory electronics. With this setup, the researchers were able to prove that the two rulers had extraordinarily long phase-coherence time. This feat is so profound, it is nearly certain to transform the investigation of matter with extreme ultraviolet light, according to Ye’s colleagues in precision measurement and laser science. This research was reported online in Nature Photonics this week.

PI: Jun Ye
Read More
Precision Measurement
Sky Clocks and the World of Tomorrow
Thumbnail
Published:

Imagine a network of multiple clocks orbiting the Earth, not only reporting down to us, but also collaborating quantum mechanically among themselves to operate precisely in sync as a single global superclock, or world clock. The world clock is delivering the most precise timekeeping in all of human history—to every member nation regardless of politics, alliances, or behavior on the ground. Moreover, the world clock itself is virtually immune to sabotage and can peer under the surface of the Earth to uncover its detailed composition or out into space to reveal a better understanding of fundamental physical principles such as quantum mechanics and gravity. 

PI: Jun Ye
Read More
Atomic & Molecular Physics
Dealing with Loss
Thumbnail
Published:

There’s exciting news from JILA’s ultracold molecule collaboration. The Jin, Ye, Holland, and Rey groups have come up with new theory (verified by experiment) that explains the suppression of chemical reactions between potassium-rubidium (KRb) molecules in the KRb quantum simulator. The main reason the molecules do not collide and react is continuous measurement of molecule loss from the simulator.

PI: Ana Maria Rey | PI: Deborah Jin | PI: Jun Ye | PI: Murray Holland
Read More
Atomic & Molecular Physics
A Clockwork Blue Takes the Gold
Thumbnail
Published:

JILA and NIST labs are well on the way to creating astonishingly accurate optical atomic clocks based on the neutral atoms strontium (Sr) and ytterbium (Yb). The new technologies are already capable of the most meticulous timekeeping in human history.

PI: Jun Ye
Read More
Precision Measurement
The Dipolar Express
Thumbnail
Published:

Physicists wonder about some pretty strange things. For instance, one burning question is: How round is the electron? While the simplest picture of the electron is a perfect sphere, it is possible that it is instead shaped like an egg. The egg shape would look a bit like a tiny separation of positive and negative charges. Physicists call this kind of charge separation an electric dipole moment, or EDM. The existence of an EDM in the electron or any other subatomic particle will have a profound impact on our understanding of the fundamental laws of physics. 

PI: Eric Cornell | PI: John Bohn | PI: Jun Ye
Read More
Atomic & Molecular Physics
The Great Spin Swap
Thumbnail
Published:

Research associate Bo Yan and his colleagues recently observed spin exchanges in ultracold potassium-rubidium (KRb) molecules inside an optical lattice (a crystal of light formed by interacting laser beams). In solid materials, such spin exchanges are the building blocks of advanced materials and exotic behavior.

PI: Ana Maria Rey | PI: Deborah Jin | PI: Jun Ye
Read More