Research Highlights

Laser Physics
Molecular Fingerprinting
Thumbnail
Published: April 26, 2006

Science sleuths have a new and powerful method for identifying (and investigating) atoms and molecules, thanks to Graduate Student Mike Thorpe, Research Associate Kevin Moll, Senior Research Associate Jason Jones, Undergraduate Student Assistant Ben Safdi, and Fellow Jun Ye. The new method allows them to study molecular vibrations, rotations, and collisions as well as temperature changes and chemical reactions.

PI: Jun Ye
Read More
Atomic & Molecular Physics
Time Traveling
Thumbnail
Published: October 02, 2005

Scientists in Fellow Jun Ye's lab are developing a high-precision optical atomic clock linked to super-narrow optical transitions in ultracold, trapped strontium atoms. However, unless the new clock is portable (it is not) or researchers figure out how to accurately transmit its clock signal over a fiber optic network to NIST, the legendary strontium clock will not be able to help the world keep better time.

PI: Jun Ye
Read More
Laser Physics | Precision Measurement
The Quest for Stability
Thumbnail
Published: August 10, 2005

Fellow Jan Hall has been working on stabilizing the frequency of lasers since the 1960s. Now, he, JILA Research Associate Mark Notcutt, Long-Sheng Ma (currently at BIPM in France), and Fellow Jun Ye have devised an improved, compact, and less expensive method for stabilizing lasers. The new method is based on a small, vertically mounted optical cavity (shown on the right). Because the cavity is supported exactly in the middle, the top and bottom halves change in length by equal and opposite amounts in response to vibrations.

PI: John Hall | PI: Jun Ye
Read More
Laser Physics
The World's First UV Frequency Comb
Thumbnail
Published: April 10, 2005

Jason Jones, Kevin Moll, Mike Thorpe, and Jun Ye have generated the world's first precise frequency comb in the extreme ultraviolet (EUV) using a combination of an ultrafast mode-locked laser and a precision high-finesse optical cavity. The EUV frequency comb consists of regularly spaced sharp lines that extend into the EUV region of the electromagnetic spectrum.

PI: Jun Ye
Read More
Laser Physics | Precision Measurement
The Power of Mirrors
Thumbnail
Published: April 03, 2005

Three years ago Jun Ye decided to apply an old idea for amplifying and stabilizing continuous-wave (cw) lasers to state-of-the-art ultrafast lasers. In 2002, Jason Jones, a postdoctoral fellow with Jun, analyzed whether the build-up cavities used to amplify cw laser outputs could be modified to work with ultrafast, mode-locked lasers. His detailed calculations suggested that it would be possible but technically demanding.

PI: Jun Ye
Read More
Atomic & Molecular Physics
There's Strontium in the Clock
Thumbnail
Published: April 03, 2005

A high-powered JILA collaboration led by JILA Fellows Jun Ye and Chris Greene is making important progress toward developing an ultrastable, high-accuracy optical atomic clock. The new optical clock design will use a variety of laser sources including a femtosecond comb and a diode laser stabilized with an optical cavity, which, in turn, is locked to a narrow energy level transition in ultracold strontium atoms.

PI: Chris Greene | PI: Jun Ye
Read More