Scientific Publications

Displaying 1 - 48 of 48

See also my pre-JILA publications, bottom of page.

2021

Modulation of a protein-folding landscape revealed by AFM-based force spectroscopy notwithstanding instrumental limitations
Edwards D.T., M.-A. LeBlanc, and T.T. Perkins, Proceedings Of The National Academy Of Sciences 118, e2015728118 (2021).
DOI
Type III secretion system effector proteins are mechanically labile
LeBlanc M.-A., M.R. Fink, T.T. Perkins, and M.C. Sousa, Proceedings Of The National Academy Of Sciences 118, e2019566118 (2021).
DOI
Free-energy changes of bacteriorhodopsin point mutants measured by single-molecule force spectroscopy
Jacobson D., and T.T. Perkins, Proceedings Of The National Academy Of Sciences 118, e2020083118 (2021).
DOI

2020

Correcting molecular transition rates measured by single-molecule force spectroscopy for limited temporal resolution
Jacobson D., and T.T. Perkins, Physical Review E 102, 022402 (2020).
DOI
Quantifying the native energetics stabilizing bacteriorhodopsin by single-molecule force spectroscopy
Yu H., D. Jacobson, H. Luo, and T.T. Perkins, Physical Review Letters 125, 068102 (2020).
DOI
Bending and looping of long DNA by polycomb repressive complex 2 revealed by AFM imaging in liquid
Heenan P.R., X. Wang, A. Gooding, T. Cech, and T.T. Perkins, Nucleic Acids Research 48, 2969-2981 (2020).
DOI
Membrane-protein unfolding intermediates detected with enhanced precision using a zigzag force ramp
Jacobson D., L. Uyetake, and T.T. Perkins, Biophysical Journal 118, 667-675 (2020).
DOI

2019

Imaging DNA equilibrated onto mica in liquid using biochemically relevant deposition conditions
Heenan P.R., and T.T. Perkins, Acs Nano 13, 4220-4229 (2019).
DOI
Quantifying the initial unfolding of bacteriorhodopsin reveals retinal stabilization
Yu H., P.R. Heenan, D.T. Edwards, L. Uyetake, and T.T. Perkins, Angewandte Chemie 131, 1724-1727 (2019).
DOI

2018

High-precision single-molecule characterization of the folding of an HIV RNA hairpin by atomic force microscopy
Walder R., W.J. Van Patten, D.B. Ritchie, R.K. Montange, T.W. Miller, M.T. Woodside, and T.T. Perkins, Nano Letters 18, 6318-6325 (2018).
DOI
FEATHER: Automated Analysis of Force Spectroscopy Unbinding and Unfolding Data via a Bayesian Algorithm
Heenan P.R., and T.T. Perkins, Biophysical Journal 115, 757-762 (2018).
DOI
Cover image.
Improved free-energy landscape quantification illustrated with a computationally designed protein-ligand interaction
Van Patten W.J., R. Walder, A. Adhikari, S.R. Okoniewski, R. Ravichandran, C.E. Tinberg, D. Baker, and T.T. Perkins, Chemphyschem 19, 19-23 (2018).
DOI
Going vertical to improve accuracy in AFM-based single-molecule force spectroscopy
Walder R., W.J. Van Patten, A. Adhikari, and T.T. Perkins, Acs Nano 12, 198-207 (2018).
DOI
Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy
Heenan P.R., H. Yu, M.G.W. Siewny, and T.T. Perkins, The Journal Of Chemical Physics 148, 123313 (2018).
PDF | DOI

2017

Force spectroscopy with 9-μs resolution and sub-pN stability by tailoring AFM cantilever geometry
Edwards D.T., J.K. Faulk, M.-A. LeBlanc, and T.T. Perkins, Biophysical Journal 113, 2595-2600 (2017).
DOI
Force-activated DNA substrates for probing individual proteins interacting with single-stranded DNA
Okoniewski S.R., L. Uyetake, and T.T. Perkins, Nucleic Acids Research 45, 10775-10782 (2017).
DOI
Rapid characterization of a mechanically labile α-helical protein enabled by efficient site-specific bioconjugation
Walder R., M.-A. LeBlanc, W.J. Van Patten, D.T. Edwards, J.A. Greenberg, A. Adhikari, S.R. Okoniewski, R.M.A. Sullan, D. Rabuka, M.C. Sousa, and T.T. Perkins, Journal Of The American Chemical Society 139, 9867-9875 (2017).
PDF | DOI
Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins
Yu H., M.G.W. Siewny, D.T. Edwards, A.W. Sanders, and T.T. Perkins, Science 355, 945-950 (2017).
DOI
Improved force spectroscopy using focused-ion-beam modified cantilevers
Faulk J.K., D.T. Edwards, M.S. Bull, and T.T. Perkins, in Methods In Enzymology, Single-Molecule Enzymology: Nanomechanical Manipulation and Hybrid Methods (Elsevier, 2017), pp. 321-351.
DOI
A surface-coupled optical trap with 1-bp precision via active stabilization
Okoniewski S.R., A.R. Carter, and T.T. Perkins, in Methods In Molecular Biology, Optical Tweezers (Humana Press, New York, Ny, 2017), pp. 77-107.
DOI
Optimizing force spectroscopy by modifying commercial cantilevers: Improved stability, precision, and temporal resolution
Edwards D.T., and T.T. Perkins, Journal Of Structural Biology 197, 13-25 (2017).
PDF | DOI

2016

Sequence-dependent nanometer-scale conformational dynamics of individual RecBCD-DNA complexes
Carter A.R., M.H. Seaberg, H.-F. Fan, G. Sun, C.J. Wilds, H.-W. Li, and T.T. Perkins, Nucleic Acids Research 44, 5849-5860 (2016).
PDF | DOI

2015

Publication image.
Optimizing 1-μs-resolution single-molecule force spectroscopy on a commercial AFM
Edwards D.T., J.K. Faulk, A.W. Sanders, M.S. Bull, R. Walder, M.-A. LeBlanc, M.C. Sousa, and T.T. Perkins, Nano Letters 151005120507003 (2015).
DOI
Direct observation of the reversible two-state unfolding and refolding of an α/β protein by single-molecule atomic force microscopy
He C., C. Hu, X. Hu, X. Hu, A. Xiao, T.T. Perkins, and H. Li, Angewandte Chemie International Edition 54, 9921-9925 (2015).
DOI
Ultrastable measurement platform: sub-nm drift over hours in 3D at room temperature
Walder R., H. Paik, M.S. Bull, C. Sauer, and T.T. Perkins, Optics Express 23, 16554 (2015).
DOI

2014

Ångström-precision optical traps and applications
Perkins T.T., Annual Review Of Biophysics 43, 279-302 (2014).
PDF | DOI
Ultrastable atomic force microscopy: Improved force and positional stability
Churnside A.B., and T.T. Perkins, Febs Letters 588, 3621-3630 (2014).
PDF | DOI
Cover image.
Improved single-molecule force spectroscopy using micromachined cantilevers
Bull M.S., R.M.A. Sullan, H. Li, and T.T. Perkins, Acs Nano 8, 4984-4995 (2014).
PDF | DOI

2013

Nano-chemical infrared imaging of membrane proteins in lipid bilayers
Berweger S., D.M. Nguyen, E.A. Muller, H.A. Bechtel, T.T. Perkins, and M.B. Raschke, Journal Of The American Chemical Society 135, 18292-18295 (2013).
PDF | DOI
Torsionally constrained DNA for single-molecule assays: an efficient, ligation-free method
Paik H., V.A. Roskens, and T.T. Perkins, Nucleic Acids Research 41, e179 - e179 (2013).
PDF | DOI
Atomic force microscopy with sub-picoNewton force stability for biological applications
Sullan R.M.A., A.B. Churnside, D.M. Nguyen, M.S. Bull, and T.T. Perkins, Methods 60, 131-141 (2013).
PDF | DOI
Optimizing bead size reduces errors in force measurements in optical traps
Montange R.K., M.S. Bull, E. Shanblatt, and T.T. Perkins, Optics Express 21, 39 (2013).
PDF | DOI

2012

Cover image.
Dynamics and multiple stable binding modes of DNA intercalators revealed by single molecule force spectroscopy
Paik H., and T.T. Perkins, Angewandte Chemie International Edition 51, 1731-1731 (2012).
PDF | DOI
Routine and timely sub-picoNewton force stability and precision for biological applications of atomic force microscopy
Churnside A.B., R.M.A. Sullan, D.M. Nguyen, S.O. Case, M.S. Bull, G.M. King, and T.T. Perkins, Nano Letters 12, 3557-3561 (2012).
PDF | DOI
Single-molecule optical-trapping measurements with DNA anchored to an array of gold nanoposts
Paik H., and T.T. Perkins, in Methods In Molecular Biology, Spectroscopic Methods of Analysis (Humana Press, New York, 2012), pp. 335-356.
DOI

2011

Cover image.
Overstretching DNA at 65 pN does not require peeling from free ends or nicks
Paik H., and T.T. Perkins, Journal Of The American Chemical Society 133, 3219-3221 (2011).
PDF | DOI

2010

Label-free optical imaging of membrane patches for atomic force microscopy
Churnside A.B., G.M. King, and T.T. Perkins, Optics Express 18, 23924 (2010).
PDF | DOI

2009

Single-molecule studies of RecBCD
Perkins T.T., and H.-W. Li, in Methods In Molecular Biology, Spectroscopic Methods of Analysis (Humana Press, 2009), pp. 155-172.
DOI
Integrating a high-force optical trap with gold nanoposts and a robust gold-DNA bond
Paik H., Y. Seol, W.A. Halsey, and T.T. Perkins, Nano Letters 9, 2978-2983 (2009).
PDF | DOI
Ultrastable atomic force microscopy: atomic-scale stability and registration in ambient conditions
King G.M., A.R. Carter, A.B. Churnside, L.S. Eberle, and T.T. Perkins, Nano Letters 9, 1451-1456 (2009).
PDF | DOI
Precision surface-coupled optical-trapping assay with 1 base-pair resolution
Carter A.R., Y. Seol, and T.T. Perkins, Biophysical Journal 96, 2926-2934 (2009).
PDF | DOI
Cover image.
Optical traps for single molecule biophysics: a primer
Perkins T.T., Laser & Photonics Review 3, 203-220 (2009).
PDF | DOI

2007

Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6–7 μm
Seol Y., J. Li, P.C. Nelson, T.T. Perkins, and M.D. Betterton, Biophysical Journal 93, 4360-4373 (2007).
PDF | DOI
Back-scattered detection provides atomic-scale localization precision, stability, and registration in 3D
Carter A.R., G.M. King, and T.T. Perkins, Optics Express 15, 13434 (2007).
PDF | DOI
TFIIA changes the conformation of the DNA in TBP/TATA complexes and increases their kinetic stability
Hieb A.R., W.A. Halsey, M.D. Betterton, T.T. Perkins, J.F. Kugel, and J.A. Goodrich, Journal Of Molecular Biology 372, 619-632 (2007).
PDF | DOI
Stabilization of an optical microscope to 0.1 nm in three dimensions
Carter A.R., G.M. King, T.A. Ulrich, W.A. Halsey, D. Alchenberger, and T.T. Perkins, Applied Optics 46, 421 (2007).
PDF | DOI

2006

Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating
Seol Y., A.E. Carpenter, and T.T. Perkins, Optics Letters 31, 2429 (2006).
PDF | DOI

2004

Measuring 0.1-nm motion in 1 ms in an optical microscope with differential back-focal-plane detection
Nugent-Glandorf L., and T.T. Perkins, Optics Letters 29, 2611 (2004).
PDF | DOI

Pre-JILA Scientific Publications (Top)

2004

Forward and reverse motion of single RecBCD molecules on DNA
Perkins T.T., H.-W. Li, R.V. Dalal, J. Gelles, and S.M. Block, Biophysical Journal 86, 1640-1648 (2004).
PDF | DOI

2003

Sequence-dependent pausing of single lambda exonuclease molecules
Perkins T.T., R.V. Dalal, P.G. Mitsis, and S.M. Block, Science 301, 1914-1918 (2003).
PDF | DOI

1999

Single polymers in elongational flows: dynamic, steady-state, and population-averaged properties
Perkins T.T., D.E. Smith, and S. Chu, in Flexible Polymer Chains In Elongational Flow (Springer Berlin Heidelberg, 1999), pp. 283-334.
DOI
The hydrodynamics of a DNA molecule in a flow field
Larson R.G., T.T. Perkins, D.E. Smith, and S. Chu, in Flexible Polymer Chains In Elongational Flow (Springer Berlin Heidelberg, 1999), pp. 259-282.
DOI

1997

Single polymer dynamics in an elongational flow
Perkins T.T., D.E. Smith, and S. Chu, Science 276, 2016-2021 (1997).
PDF | DOI
Hydrodynamics of a DNA molecule in a flow field
Larson R.G., T.T. Perkins, D.E. Smith, and S. Chu, Physical Review E 55, 1794-1797 (1997).
DOI

1996

Dynamical scaling of DNA diffusion coefficients
Smith D.E., T.T. Perkins, and S. Chu, Macromolecules 29, 1372-1373 (1996).
DOI

1995

Self-diffusion of an entangled DNA molecule by reptation
Smith D.E., T.T. Perkins, and S. Chu, Physical Review Letters 75, 4146-4149 (1995).
DOI
Stretching of a single tethered polymer in a uniform flow
Perkins T.T., D.E. Smith, R.G. Larson, and S. Chu, Science 268, 83-87 (1995).
DOI

1994

Cover image.
Relaxation of a single DNA molecule observed by optical microscopy
Perkins T.T., S.R. Quake, D.E. Smith, and S. Chu, Science 264, 822-826 (1994).
DOI
Direct observation of tube-like motion of a single polymer chain
Perkins T.T., D.E. Smith, and S. Chu, Science 264, 819-822 (1994).
DOI

1993

Steady‐state gain and saturation flux measurements in a high efficiency, electron‐beam‐pumped, Ar‐Xe laser
Perkins T.T., Journal Of Applied Physics 74, 4860-4866 (1993).
DOI