Imaging DNA Equilibrated onto Mica in Liquid Using Biochemically Relevant Deposition Conditions

Author
Abstract
For over 25 years, imaging of DNA by atomic force microscopy has been intensely pursued. Ideally, such images are then used to probe the physical properties of DNA and characterize protein\textendashDNA interactions. The atomic flatness of mica makes it the preferred substrate for high signal-to-noise ratio (SNR) imaging, but the negative charge of mica and DNA hinders deposition. Traditional methods for imaging DNA and protein\textendashDNA complexes in liquid have drawbacks: DNA conformations with an anomalous persistence length (<em>p</em>), low SNR, and/or ionic deposition conditions detrimental to preserving protein\textendashDNA interactions. Here, we developed a process to bind DNA to mica in a buffer containing both MgCl<sub>2</sub>\&nbsp;and KCl that resulted in high SNR images of equilibrated DNA in liquid. Achieving an equilibrated 2D configuration (i.e.,\&nbsp;<em>p</em>\&nbsp;= 50 nm) not only implied a minimally perturbative binding process but also improved data quality and quantity because the DNA\textquoterights configuration was more extended. In comparison to a purely NiCl<sub>2</sub>-based protocol, we showed that an 8-fold larger fraction (90\%) of 680-nm-long DNA molecules could be quantified. High-resolution images of select equilibrated molecules revealed the right-handed structure of DNA with a helical pitch of 3.5 nm. Deposition and imaging of DNA was achieved over a wide range of monovalent and divalent ionic conditions, including a buffer containing 50 mM KCl and 3 mM MgCl<sub>2</sub>. Finally, we imaged two protein\textendashDNA complexes using this protocol: a restriction enzyme bound to DNA and a small three-nucleosome array. We expect such deposition of protein\textendashDNA complexes at biochemically relevant ionic conditions will facilitate biophysical insights derived from imaging diverse protein\textendashDNA complexes.
Year of Publication
2019
Journal
ACS Nano
Date Published
2019-04
ISSN Number
1936-0851
URL
https://pubs.acs.org/doi/full/10.1021/acsnano.8b09234
DOI
10.1021/acsnano.8b09234
JILA PI
Journal Article