Past Events

Designing sensors with tensioned silicon nitride micromechanical resonators

When
-

Abstract: Mechanical resonators based on stressed silicon nitride have both exemplary optical and mechanical properties. Through targeted shaping of the resonator geometry, the dissipative properties of these resonators can be enhanced, yielding micromechanical devices that maintain coherence for up to billions of oscillation periods.

TBA

When
-

Butcher Auditorium, A115, JSCBB 3415 Colorado Ave, Boulder, CO 80303

Programmable arrays of alkaline earth atoms: qubits, clocks, and the Bose-Hubbard model

When
-

Abstract: Neutral atoms trapped in optical tweezer arrays have emerged as a promising platform for quantum computing, and for the analog simulation of various spin models. In this work, we apply the programmable control provided by optical tweezer arrays to new domains in quantum science by means of interfacing optical tweezers with a Hubbard-regime optical lattice, and extending the optical tweezer toolbox to new atomic species (namely alkaline earth atoms).

Pushing LIGO’s quantum limits

When
-

Abstract: The Advanced LIGO detectors operate at a regime where quantum uncertainty imposes a fundamental limitation to sensitivity in the form of quantum shot noise and quantum radiation pressure noise. During the last gravitational wave observing run O3, the LIGO and Virgo detectors used quantum states of light known as squeezed states of light in order to reduce high frequency quantum shot noise.

More than physics, more than data: Integrated machine-learning models for chemistry

When
-

Abstract: Machine-learning techniques are often applied to perform "end-to-end" predictions, that is to make a black-box estimate of a property of interest using only a coarse description of the corresponding inputs.
In contrast, atomic-scale modeling of matter is most useful when it allows to gather a mechanistic insight into the microscopic processes that underlie the behavior of molecules and materials. 

Recent spectroscopic observations of stellar flares and possible stellar mass ejections

When
-

Abstract: Flares are frequent energetic explosions in the stellar atmosphere, and are thought to occur by impulsive releases of magnetic energy stored around starspots. Large flares (so called “superflares”) generate strong high energy X-ray and ultraviolet emissions and coronal mass ejections (CMEs), which can greatly affect the planetary environment and habitability. Recent Kepler/TESS photometric data have revealed the statistical properties of superflares on G, K, and M-type stars.

Using anisotropic strain to probe multipolar order parameters

When
-

Abstract: Because it can be applied in-situ in a continuous fashion, and can be tailored to preserve or break selected spatial symmetries, piezoelectric devices-based strain has lately emerged as a versatile tuning parameter of quantum materials. In this talk we will focus on utilizing anisotropic strain as a probe of otherwise elusive multipolar orders in solids. Using the adiabatic AC elastocaloric effect, a compact, thermodynamic strain-based experimental technique [1,2], we study anisotropic strain effects on f electron-based multipolar orders [3,4].

Quantum Simulation - from Dipolar Quantum Solids to Kinetic Nagaoka Ferromagnetism

When
-

Abstract: Quantum simulations with ultracold atoms in optical lattices enter the next phase, in which we can extend bosonic and fermionic Hubbard models in a wide range of ways. I will present recent results in which we realized strongly correlated dipolar quantum gases and observed quantum-phase transitions to stripe and checkerboard phases.

TBA

When
-

Butcher Auditorium, A115, JSCBB 3415 Colorado Ave, Boulder, CO 80303