Pseudogap at ultralow temperatures in a Fermi-Hubbard quantum simulator
The behavior of the doped Hubbard model at low temperatures is a central problem in modern condensed matter physics, with relevance to correlated materials such as cuprate superconductors. Despite extensive computational studies, many open questions remain on its low-temperature phase diagram, motivating its study through quantum simulation with ultracold fermionic atoms in optical lattices. Here, leveraging a recent several-fold reduction in experimental temperatures, we report the first direct experimental observation of the pseudogap metal in the Hubbard model.


