Research Highlights

Displaying 221 - 240 of 497
Laser Physics
The Guiding Light
Published:

The Kapteyn/Murnane group, with Visiting Fellow Charles Durfee, has figured out how to use visible lasers to control x-ray light! The new method not only preserves the beautiful coherence of laser light, but also makes an array of perfect x-ray laser beams with controlled direction and polarization. Such pulses may soon be used for observing chemical reactions or investigating the electronic motions inside atoms. They are also well suited for studying magnetic materials and chiral molecules like proteins or DNA that come in left- and right-handed versions.

Read More
PI(s):
Henry Kapteyn | Margaret Murnane
Quantum Information Science & Technology
An Array of Possibilities
Published:

Graduate student Brian Lester of the Regal group has taken an important step toward building larger, more complex systems from single-atom building blocks. His accomplishment opens the door to advances in neutral-atom quantum computing, investigations of the interplay of spin and motion as well as the synthesis of novel single molecules from different atoms.

Read More
PI(s):
Cindy Regal
Astrophysics
Interstellar Spaghetti, with Meatballs Inside
Published:

When an ordinary star like our Sun wanders very close to a supermassive black hole, it’s very bad news for the star. The immense gravitational pull of the black hole (i.e., tidal forces) overcomes the forces of gravity holding the star together and literally pulls the star apart. Over time, the black hole swallows half of the star stuff, while the other half escapes into the interstellar medium. This destructive encounter between a supermassive black hole and a star is known as a tidal disruption event.

Read More
PI(s):
Mitch Begelman
Astrophysics
Beautiful & Twisted
Published:

Ever wondered how magnetic pressure alone might be able to maintain the structure of an accretion disk around a black hole in an x-ray binary system? Fellow Mitch Begelman recently gave the idea a lot of thought. And, in the process of working on the idea with Fellow Phil Armitage and Chris Reynolds of the University of Maryland, Begelman came up with a new model for accretion disks around black holes in x-ray binary systems, such as the one shown in the picture.

Read More
PI(s):
Mitch Begelman | Phil Armitage
Atomic & Molecular Physics
Lattice Light and the Chips
Published:

Compact and transportable optical lattices are coming soon to a laboratory near you, thanks to the Anderson group and its spin-off company, ColdQuanta. A new robust on-chip lattice system (which measures 2.3 cm on a side) is now commercially available. The chip comes with a miniature vacuum system, lasers, and mounting platform.

Read More
PI(s):
Dana Anderson
Astrophysics
Multitalented Lyman-α
Published:

For astrophysicists like Fellow Jeff Linsky, the Lyman-α spectral line of atomic hydrogen is a powerful tool for investigating the stellar winds emitted by stars, the deuterium/hydrogen (D/H) ratio in the Galaxy, the excited states of hydrogen molecules and carbon monoxide in the environments around young stars, and photochemical processes that create oxygen in the atmospheres of planets around other stars, or exoplanets.

Read More
PI(s):
Jeffrey Linsky
Biophysics
Custom-Made RNA
Published:

A wildly successful JILA (Nesbitt Group)-NIH collaboration is opening the door to studies of RNA behavior, including binding, folding and other factors that affect structural changes of RNA from living organisms. Such structural changes determine RNA enzymatic functions, including the regulation of genetic information.

Read More
PI(s):
David Nesbitt
Laser Physics
Every Generation Needs a New Revolution
Published:

For decades after the invention of the red ruby laser in 1960, bright laser-like beams were confined to the infrared, visible, and ultraviolet region of the spectrum. Today there’s an exciting revolution afoot: new coherent x-ray beams are now practical, including the EUV beams gracing the cover of the May 1, 2015, special issue of Science honoring the International Year of Light. The same issue features an article entitled “Beyond Crystallography: Diffractive Imaging Using Coherent X-ray Light Sources” that celebrates the revolutionary advances in both large- and small-scale coherent x-ray sources that are transforming imaging in the 21st century.

Read More
PI(s):
Margaret Murnane
Precision Measurement
About Time
Published:

The Ye group has just improved the accuracy of the world’s best optical atomic clock by another factor of three and set a new record for clock stability. The accuracy and stability of the improved strontium lattice optical clocks is now about 2 x 10-18, or the equivalent of not varying from perfect time by more than one second in 15 billion years—more than the age of the Universe. Clocks like the Ye Group optical lattice clocks are now so exquisitely precise that they may have outpaced traditional applications for timekeeping such as navigation (GPS) and communications.

Read More
PI(s):
Jun Ye
Atomic & Molecular Physics
A Bug’s Life
Published:

The Ye Group recently investigated what first appeared to be a “bug” in an experiment and made an unexpected discovery about a new way to generate high-harmonic light using molecular gases rather than gases of noble atoms. Graduate student Craig Benko and his colleagues in the Ye group were studying the interaction of light from an extreme ultraviolet (XUV) frequency comb with molecules of nitrous oxide, or laughing gas (N2O), when they noticed unusual perturbations in the laser spectrum.

Read More
PI(s):
Jun Ye
Nanoscience
Come Close to Me
Published:

One of the great challenges in the semiconductor and electronics industries is that as nanoscale features get smaller and processes get faster, enormous amounts of heat need to be quickly carried away from the nanostructures. The Kapteyn/Murnane group has made the counter-intuitive discovery that it is easier to cool these nanostructures when they are arranged closely together. The researchers also developed a theory to explain this unexpected new behavior.

Read More
PI(s):
Henry Kapteyn | Margaret Murnane
Astrophysics
Gamma Ray Exposé
Published:

Supermassive black holes at the center of active galaxies are known as blazars when they are extremely bright and produce powerful jets of matter and radiation visible along the line of sight to the Earth. Blazars can appear up to a thousand times more luminous than ordinary galaxies, and their associated jets are so powerful they can travel millions of light years across the Universe. Blazar jets produce flares of high-energy gamma rays that are detected by ground- and space-based observatories.

Read More
PI(s):
Mitch Begelman
Atomic & Molecular Physics
An Ultrafast Photoelectric Adventure
Published:

The photoelectric effect has been well known since the publication of Albert Einstein’s 1905 paper explaining that quantized particles of light can stimulate the emission of electrons from materials. The nature of this quantum mechanical effect is closely related to the question how much time it might take for an electron to leave a material such as a helium atom.

Read More
PI(s):
Agnieszka Jaron-Becker | Andreas Becker
Atomic & Molecular Physics | Quantum Information Science & Technology
Terms of Entanglement
Published:

When the Rey theory group first modeled a quantum system at JILA, it investigated the interactions of strontium atoms in the Ye group’s strontium-lattice clock. The quantum behavior of these collective interactions was relatively simple to model. However, the group has now successfully tackled some more complicated systems, including the ultracold polar KRb molecule experiment run by the Jin and Ye groups.

Read More
PI(s):
Deborah Jin
Atomic & Molecular Physics | Quantum Information Science & Technology
Terms of Entanglement
Published:

When the Rey theory group first modeled a quantum system at JILA, it investigated the interactions of strontium atoms in the Ye group’s strontium-lattice clock. The quantum behavior of these collective interactions was relatively simple to model. However, the group has now successfully tackled some more complicated systems, including the ultracold polar KRb molecule experiment run by the Jin and Ye groups. In the process, the group has developed a new theory that will open the door to probing quantum spin behavior in real materials; atomic, molecular and optical gases; and other complex systems. The new theory promises important insights in different areas of physics, quantum information science, and biology.

Read More
PI(s):
Ana Maria Rey
Biophysics
Mutant Chronicles
Published:

Because red fluorescent proteins are important tools for cellular imaging, the Jimenez group is working to improve them to further biophysics research. The group’s quest for a better red-fluorescent protein began with a computer simulation of a protein called mCherry that fluoresces red light after laser illumination. The simulation identified a floppy (i.e., less stable) portion of the protein “barrel” enclosing the red-light emitting compound, or chromophore. The thought was that when the barrel flopped open, it would allow oxygen in to degrade the chromophore, thus destroying its ability to fluoresce.

Read More
PI(s):
Ralph Jimenez
Atomic & Molecular Physics
Metamorphosis
Published:

A grand challenge of ultracold physics is figuring out how fermions become bosons. This is an important question because the tiniest quantum particles of matter are all fermions. However, these fermions can form larger chunks of matter, such as atoms and molecules, which can be either fermions or bosons.

Read More
PI(s):
Deborah Jin
Laser Physics
The Polarized eXpress
Published:

Until recently, researchers who wanted to understand how magnetic materials work had to reserve time on a large, stadium-sized X-ray machine called a synchrotron. Synchrotrons can produce X-ray beams that can be sculpted very precisely to capture how the spins in magnetic materials work together to give us beautiful and useful magnetic properties – for example to store data in a computer hard drive. But now, thanks to Patrik Grychtol and his colleagues in the Kapteyn/Murnane group, there’s a way to conduct this kind of research in a small university laboratory.

Read More
PI(s):
Henry Kapteyn | Margaret Murnane
Atomic & Molecular Physics
Exciting Adventures in Coupling
Published:

New theory describing the spin behavior of ultracold polar molecules is opening the door to explorations of exciting, new physics in JILA’s cold molecular lab, operated by the Jin and Ye groups. According to the Rey theory group and its collaborators, ultracold dipolar molecules can do even more interesting things than swapping spins.

Read More
PI(s):
Ana Maria Rey
Quantum Information Science & Technology
The Quantum Identity Crisis
Published:

Dynamical phase transitions in the quantum world are wildly noisy and chaotic. They don’t look anything like the phase transitions we observe in our everyday world. In Colorado, we see phase transitions caused by temperature changes all the time: snow banks melting in the spring, water boiling on the stove, slick spots on the sidewalk after the first freeze. Quantum phase transitions happen, too, but not because of temperature changes. Instead, they occur as a kind of quantum “metamorphosis” when a system at zero temperature shifts between completely distinct forms.

Read More
PI(s):
James Thompson | Murray Holland