Upcoming Events

From the Hubble Space Telescope to the Habitable Worlds Observatory

When
-

The Hubble Space Telescope story has been a fascinating study in public policy, engineering, ethics, and science. The Hubble is perhaps the most productive scientific instrument ever created by humans. In May 2009, a team of astronauts flew to the Hubble Space Telescope on space shuttle Atlantis. On their 13-day mission and over the course of 5 spacewalks they completed an extreme makeover of the orbiting observatory.

A mechanical quantum memory

When
-

Mechanical systems operating in the quantum regime offer an attractive platform for quantum information processing, precision sensing, and probing fundamental physics. In this talk, I will present new techniques for generating and characterizing non-classical states of mechanical motion using superconducting qubits. Our approach couples the electrical and mechanical degrees of freedom via modulation of the electrostatic force in a miniaturized vacuum-gap capacitor.

Next-generation superconducting qubits via defect and phonon engineering

When
-

Abstract: Fault-tolerant quantum computation requires further advances in lowering physical qubit error rates in scalable architectures. In this talk, I will present our work on superconducting quantum devices to reduce error rates and resource overheads in processors.  I will discuss how defects and interfaces in silicon limit superconducting qubit performance. I will present our discovery of interface piezoelectricity at a superconductor-silicon junction and the impact of this effect on superconducting qubits.

The 2025 Nobel Prize in Physics: A Brief History of Superconducting Qubits and Circuit Quantum Electrodynamics

When
-

Abstract: The 2025 Nobel Prize in Physics was awarded to John Clarke, Michel Devoret, and John Martinis “for the discovery of macroscopic quantum mechanical tunnelling and energy quantization in an electric circuit.”  This talk will give a brief history of their work and the remarkable developments that followed from it.

Deciphering Hydrogen-Bonding Signatures as Molecular Fingerprints: Cryogenic Ion Vibrational Spectroscopy of Anion-Receptors and Biomarkers

When
-

Abstract: Understanding the fundamental interactions that influence molecular recognition is essential for advancing applications in drug design, sensing, and materials chemistry. This dissertation uses cryogenic ion vibrational spectroscopy (CIVS) to investigate noncovalent interactions in anion-receptor complexes by studying mass-selected gas-phase ions at cryogenic temperatures, eliminating complexities due to solvation effects.

Toward a Rational Understanding of Polariton Chemistry

When
-

Mid-Infrared (MIR) light can interact with molecules by selectively exciting molecular vibrational modes. In combination with photonic structures, MIR can target specific vibrational states of molecular to influence chemical reactions. In this talk, I will explain how photonic environments can modify molecular dynamics through strong light-matter coupling. This strong coupling leads to the molecular vibrational polaritons – a hybrid quasiparticle between light and matter.

Laboratory Measurements of Asteroid Fragmentation

When
-

Abstract: The scales of asteroid strength, from centimeters to tens of meters or more, can in principle be connected via the well-known Weibull theory (Weibull 1951) that explains in probabilistic terms why small samples of a rock are stronger than the whole. There are fewer weak flaws to be exploited in a smaller sample. This leads to a statistical understanding of size-dependent strength that has been implemented in fragmentation and damage models for planetary materials (Melosh et al., 1992; Benz and Asphaug 1994, 1995). The Weibull analysis enabled Cotto-Figueroa et al.

Ultra-high Vacuum (UHV) best practices

When
-

Edwards Vacuum will be providing a training on Ultra-high Vacuum (UHV) best practices, including best known methods on pump configuration, bake-out, etc.  The goal is to help align UHV best practices department wide to reduce experiment set-up time and re-work. This could also apply to those that do not use UHV today, but may like to take advantage of broadening their UHV knowledge for the future.

What can the Standard Model actually predict?

When
-

Abstract: The most basic requirement of a scientific theory is that it make predictions. Is the Standard Model a scientific theory? As the well-tested, reigning theory of the elementary particles and fundamental forces, the Standard Model certainly claims to be able to predict the outcomes of a wide range of experiments. Yet from inelastic nuclear scattering, to neutron stars and superconductors, the universe is filled with systems whose behavior should be predicted by the Standard Model, but for which no such predictions are forthcoming!

No Fireworks: Black Hole Radiation Builds Gradually

When
-

Abstract: This talk will explore how quantum radiation - known as Hawking radiation – emerges when a black hole forms in the gravitational collapse of a star. While it has long been known that black holes emit energy, its precise origin has been debated. Over the decades, some researchers proposed that this energy is released directly from the collapsing star, producing a sudden burst that may potentially disrupt the collapse.

Reaction Mechanisms of Combustion Intermediates

When
-

Abstract: Modeling gas-phase chemical kinetics relevant to combustion and atmospheric chemistry requires a complete description of elementary reactions involving ephemeral species such as hydroperoxyalkyl radicals, Q̇OOH, which undergo competing sets of unimolecular reactions and bimolecular reactions with O2. The balance of flux from the competition affects rates of chain-branching and inherently depends on temperature, pressure, and oxygen concentration.