Precision Test of the Limits to Universality in Few-Body Physics

Author
Abstract
We perform precise studies of two- and three-body interactions near an intermediate-strength Feshbach resonance in <sup>39</sup>K at 33.5820(14) G. Precise measurement of dimer binding energies, spanning three orders of magnitude, enables the construction of a complete two-body coupled-channel model for determination of the scattering lengths with an unprecedented low uncertainty. Utilizing an accurate scattering length map, we measure the precise location of the Efimov ground state to test van der Waals universality. Precise control of the sample's temperature and density ensures that systematic effects on the Efimov trimer state are well understood. We measure the ground Efimov resonance location to be at -14.05(17) times the van der Waals length r<sub>vdW</sub>, significantly deviating from the value of -9.7r<sub>vdW</sub> predicted by van der Waals universality. We find that a refined multichannel three-body model, built on our measurement of two-body physics, can account for this difference and even successfully predict the Efimov inelasticity parameter η.
Year of Publication
2019
Journal
Physical Review Letters
Volume
123
Date Published
2019-12
ISSN Number
0031-9007
URL
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.233402
DOI
10.1103/PhysRevLett.123.233402
JILA PI
Associated Institutes
Journal Article