Past Events

Quantum Simulation of Gauge Theories

When
-

Abstract:
Gauge theories are ubiquitous in fundamental physics with applications ranging from high-energy particle physics over emergent phenomena in condensed matter to quantum information science and technology. Since several regimes of interest have remained inaccessible to classical simulations, they constitute an ideal target for quantum simulations.

Quantum Signal Processing: Making Schrödinger Cats and Other Exotic States of Microwave PhotonsGauge Theories

When
-

Abstract: The Schrödinger Cat idea was an early thought experiment intended to point out the weirdness of quantum mechanics. It is a paradigmatic example of the quantum principles of superposition and entanglement. With the vast experimental progress in the last two decades, we can now routinely carry out this experiment in the laboratory.

JILA Mentoring in a Research Environment Training (day 2)

When
-

Description: This training was developed by the Center for the Improvement of Mentored Experiences in Research (CIMER) at University of Wisconsin Madison and provides evidence-based, interactive mentor training curricula that engages mentors in collective problem solving and connects them with resources to optimize their mentoring practices. Mentors engage in activities, assignments, case studies, and facilitated discussions to solve mentoring dilemmas and share successful mentorship strategies.

Learning Objectives:

Towards Efficient Programmable Quantum Simulation of Correlated Bosons and Lattice Gauge Theories

When
-

Abstract: It is well-known that interacting fermions are difficult to simulate on quantum computers because of the sign problem. It is less widely appreciated that simulations of models containing bosons can also be difficult—unless the hardware contains native bosonic degrees of freedom. The ability of superconducting quantum processors to control and make quantum non-demolition (QND) measurements of individual microwave photons is a powerful resource for quantum simulation, especially for simulation of condensed matter models and lattice gauge theories containing bosons.

JILA Mentoring in a Research Environment Training (day 1)

When
-

Description: This training was developed by the Center for the Improvement of Mentored Experiences in Research (CIMER) at University of Wisconsin Madison and provides evidence-based, interactive mentor training curricula that engages mentors in collective problem solving and connects them with resources to optimize their mentoring practices. Mentors engage in activities, assignments, case studies, and facilitated discussions to solve mentoring dilemmas and share successful mentorship strategies.

Learning Objectives:

Molecules under new light

When
-

Abstract: 

New tools of light for increasingly refined observation and control of molecules are providing new opportunities to study complex structure and emergent quantum properties, to set new bounds for fundamental symmetry, to probe real-time reaction kinetics, and to apply molecular sensing for medical diagnosis. Meanwhile, quantum gases of molecules constitutes an outstanding experimental platform for precise quantum state engineering and control of inter-molecular interactions, enabling exploration of novel chemical reactions and quantum magnetism.

Storm Chasing in the Tropics and Subtropics with the NASA INCUS Mission

When
-

Abstract: Convective Mass Flux (CMF) – the vertical transport of air and water by deep convective storms – drives the large-scale circulation, upper tropospheric moistening, high cloud-raditiave feedbacks, surface precipitation rates, and extreme weather. Despite the fundamental role played by CMF, our understanding of the processes controlling CMF is rudimentary, and the representation of CMF remains a major source of error in our numerical models across the scales.

CANCELLED: Surface and Interface Engineering for Reversible Electrochemistry

When
-

Abstract: Electrochemistry involves chemical reactions that are driven by the movement of electrons and ions, typically occurring at surfaces or interfaces. A key example is rechargeable batteries, where ions migrate through the liquid electrolyte and electrons flow through the external circuit. The electrochemical reactions take place at the electrode–electrolyte interface where electrode materials receive both ions (Li+, Na+, etc) and electrons during discharging, and release them during charging, enabling the reversible storage of electricity.

Field stars and their kinematics as a probe of massive star evolution and binary populations

When
-

Abstract: Field massive stars are more easily identified and studied than those in crowded cluster environments.  While some massive stars may form in relative isolation, most are ejected from clusters via dynamical processes and supernova kicks in binary systems.  Since both mechanisms are driven by binarity in the massive star population, field stars and their kinematics probe the effects of binarity, which can strongly influence stellar evolution by the tr