Quantum algorithm for the Vlasov equation

Author
Abstract
The Vlasov-Maxwell system of equations, which describes classical plasma physics, is extremely challenging to solve, even by numerical simulation on powerful computers. By linearizing and assuming a Maxwellian background distribution function, we convert the Vlasov-Maxwell system into a Hamiltonian simulation problem. Then for the limiting case of electrostatic Landau damping, we design and verify a quantum algorithm, appropriate for a future error-corrected universal quantum computer. While the classical simulation has costs that scale as O(Nvt) for a velocity grid with Nv grid points and simulation time t, our quantum algorithm scales as O[polylog(Nv)t/δ] where δ is the measurement error, and weaker scalings have been dropped. Extensions, including electromagnetics and higher dimensions, are discussed. A quantum computer could efficiently handle a high-resolution, six-dimensional phase-space grid, but the 1/δ cost factor to extract an accurate result remains a difficulty. This paper provides insight into the possibility of someday achieving efficient plasma simulation on a quantum computer.
Year of Publication
2019
Journal
Physical Review A
Volume
100
Date Published
2019-12
ISSN Number
2469-9926
URL
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.062315
DOI
10.1103/PhysRevA.100.062315
JILA PI
Journal Article