@article{12027,
author = {Alexander Engel and Graeme Smith and Scott Parker},
title = {Quantum algorithm for the Vlasov equation},
abstract = {The Vlasov-Maxwell system of equations, which describes classical plasma physics, is extremely challenging to solve, even by numerical simulation on powerful computers. By linearizing and assuming a Maxwellian background distribution function, we convert the Vlasov-Maxwell system into a Hamiltonian simulation problem. Then for the limiting case of electrostatic Landau damping, we design and verify a quantum algorithm, appropriate for a future error-corrected universal quantum computer. While the classical simulation has costs that scale as O(Nvt) for a velocity grid with Nv grid points and simulation time t, our quantum algorithm scales as O[polylog(Nv)t/δ] where δ is the measurement error, and weaker scalings have been dropped. Extensions, including electromagnetics and higher dimensions, are discussed. A quantum computer could efficiently handle a high-resolution, six-dimensional phase-space grid, but the 1/δ cost factor to extract an accurate result remains a difficulty. This paper provides insight into the possibility of someday achieving efficient plasma simulation on a quantum computer.},
year = {2019},
journal = {Physical Review A},
volume = {100},
month = {2019-12},
issn = {2469-9926},
url = {https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.062315},
doi = {10.1103/PhysRevA.100.062315},
}