Quantum-state-specific reaction rate measurements for the photo-induced reaction Ca^+ + O2 -> CaO^+ + O

Atoms and molecules often react at different rates depending on their internal quantum states. Thus, controlling which internal states are populated can be used to manipulate the reactivity and can lead to a more detailed understanding of reaction mechanisms. We demonstrate this control of reactions by studying the electronically excited state reaction Ca<sup>+</sup> + O<sub>2</sub> \textrightarrow CaO<sup>+</sup> + O. This reaction is exothermic only if Ca<sup>+</sup> is in one of its excited electronic states. Using laser-cooling and electrodynamic trapping, we cool and trap Ca<sup>+</sup> at millikelvin temperatures for several minutes. We can then change the fraction of time they spend in each of the two excited states by adjusting the detunings of the cooling lasers. This allows us to disentangle the reactions that begin with Ca<sup>+</sup> in the <sup>2</sup>P<sub>1/2</sub>-state from the ones where Ca<sup>+</sup> is in the <sup>2</sup>D<sub>3/2</sub>-state. Using time-of-flight mass spectrometry, we determine independent reaction rate constants for Ca<sup>+</sup> in both electronically excited states.
Year of Publication
Date Published
Journal Title
Molecular Physics
Start Page or Article ID (correct)
ISSN Number
Associated Institutes
Journal Article
JILA Topics
Group Name & Research Topics
Publication Status