Research Highlights

Optical tweezers achieve new feats of capturing atoms
Photograph of an Infrared optical tweezers device.
Published: April 04, 2019

Trapping single atoms is a bit like herding cats, which makes researchers at the University of Colorado Boulder expert feline wranglers. In a new study, a team led by physicist Cindy Regal showed that it could load groups of individual atoms into large grids with an efficiency unmatched by existing methods.  

PI: Cindy Regal
Topics: Atomic & Molecular Physics
Read More
Quiet Drumming: Reducing Noise for the Quantum Internet
Thumbnail
Published: September 24, 2018

Quantum computers are set to revolutionize society. With their expansive power and speed, quantum computers could reduce today’s impossibly complex problems, like artificial intelligence and weather forecasts, to mere algorithms. But as revolutionary as the quantum computer will be, its promises will be stifled without the right connections. Peter Burns, a JILA graduate student in the Lehnert/Regal lab, likens this stifle to a world without Wi-Fi.  

PI: Cindy Regal | PI: Graeme Smith | PI: Konrad Lehnert
Topics: Quantum Information Science & Technology
Read More
The Chameleon Interferometer
Thumbnail
Published: April 21, 2017

The Regal group recently met the challenge of measurements in an extreme situation with a device called an interferometer. The researchers succeeded by using creative alterations to the device itself and quantum correlations. Quantum correlations are unique, and often counterintuitive, quantum mechanical interactions that occur among quantum objects such as photons and atoms. The group exploited these interactions in the way they set up their interferometer, and improved its ability to measure tiny motions using photons (particles of light).

PI: Cindy Regal | PI: Konrad Lehnert
Topics: Precision Measurement
Read More
How Cold Can a Tiny Drum Get?
Thumbnail
Published: July 20, 2016

Bob Peterson and his colleagues in the Lehnert-Regal lab recently set out to try something that had never been done before: use laser cooling to systematically reduce the temperature of a tiny drum made of silicon nitride as low as allowed by the laws of quantum mechanics. Although laser cooling has become commonplace for atoms, researchers have only recently used lasers to cool tiny silicon nitride drums, stretched over a silicon frame, to their quantum ground state. Peterson and his team decided to see just how cold their drum could get via laser cooling.

PI: Cindy Regal | PI: Konrad Lehnert
Topics: Nanoscience | Topics: Precision Measurement | Topics: Quantum Information Science & Technology
Read More
Natural Born Entanglers
Thumbnail
Published: November 02, 2015

The Regal and Rey groups have come up with a novel way to generate and propagate quantum entanglement [1], a key feature required for quantum computing. Quantum computing requires that bits of information called qubits be moved from one location to another, be available to interact in prescribed ways, and then be isolated for storage or subsequent interactions. The group showed that single neutral atoms carried in tiny traps called optical tweezers may be a promising technology for the job!

PI: Ana Maria Rey | PI: Cindy Regal
Topics: Atomic & Molecular Physics | Topics: Quantum Information Science & Technology
Read More
An Array of Possibilities
Thumbnail
Published: August 19, 2015

Graduate student Brian Lester of the Regal group has taken an important step toward building larger, more complex systems from single-atom building blocks. His accomplishment opens the door to advances in neutral-atom quantum computing, investigations of the interplay of spin and motion as well as the synthesis of novel single molecules from different atoms.

PI: Cindy Regal
Topics: Quantum Information Science & Technology
Read More
The Little Shop of Atoms
Thumbnail
Published: June 26, 2014

Graduate student Adam Kaufman and his colleagues in the Regal and Rey groups have demonstrated a key first step in assembling quantum matter one atom at a time. Kaufman accomplished this feat by laser-cooling two atoms of rubidium (87Rb) trapped in separate laser beam traps called optical tweezers. Then, while maintaining complete control over the atoms to be sure they were identical in every way, he moved the optical tweezers closer and closer until they were about 600 nm apart. At this distance, the trapped atoms were close enough to “tunnel” their way over to the other laser beam trap if they were so inclined.

PI: Cindy Regal
Topics: Atomic & Molecular Physics | Topics: Precision Measurement
Read More
Good Vibrations: The Experiment
Thumbnail
Published: March 19, 2014

The Regal-Lehnert collaboration has just taken a significant step towards the goal of one day building a quantum information network. Large-scale fiber-optic networks capable of preserving fragile quantum states (which encode information) will be necessary to realize the benefits of superfast quantum computing.

PI: Cindy Regal | PI: Konrad Lehnert
Topics: Quantum Information Science & Technology
Read More
The Squeeze Machine
Thumbnail
Published: October 11, 2013

Research associate Tom Purdy and his colleagues in the Regal group have just built an even better miniature light-powered machine that can now strip away noise from a laser beam. Their secret: a creative workaround of a quantum limit imposed by the Heisenberg Uncertainty Principle. This limit makes it impossible to simultaneously reduce the noise on both the amplitude and phase of light inside interferometers and other high-tech instruments that detect miniscule position changes.

PI: Cindy Regal
Topics: Atomic & Molecular Physics | Topics: Precision Measurement
Read More
Position Wanted
Thumbnail
Published: February 14, 2013

Researchers in the Regal group have gotten so good at using laser light to track the exact position of a tiny drum that they have been able to observe a limit imposed by the laws of quantum mechanics. In a recent experiment, research associate Tom Purdy, graduate student Robert Peterson, and Fellow Cindy Regal were able to measure the motion of the drum by sending light back and forth through it many times. During the measurement, however, 100 million photons from the laser beam struck the drum at random and made it vibrate. This extra vibration obscured the motion of the drum at exactly the level of precision predicted by the laws of quantum mechanics.

PI: Cindy Regal
Topics: Precision Measurement | Topics: Quantum Information Science & Technology
Read More
Everything's Cool with Atom
Thumbnail
Published: November 29, 2012

The Regal group recently completed a nifty feat that had never been done before: The researchers grabbed onto a single trapped rubidium atom (87Rb) and placed it in its quantum ground state. This experiment has identified an important source of cold atoms that can be arbitrarily manipulated for investigations of quantum simulations and quantum logic gates in future high-speed computers.

PI: Cindy Regal
Topics: Atomic & Molecular Physics
Read More