JILA and NIST Researchers Develop Miniature Lens for Trapping Atoms

Graphical illustration of light focusing using a planar glass surface studded with millions of nanopillars (referred to as a metalens) forming an optical tweezer. (A) Device cross section depicts plane waves of light that come to a focus through secondary wavelets generated by nanopillars of varying size. (B) The same metalens is used to trap and image single rubidium atoms.

Image Credit
Sean Kelley/NIST

JILA Fellow Cindy Regal and her team, along with researchers at the National Institute of Standards and Technology (NIST), have for the first time demonstrated that they can trap single atoms using a novel miniaturized version of “optical tweezers” — a system that grabs atoms using a laser beam as chopsticks.

 In the new design, instead of typical lenses, the team used unconventional optics — a square glass wafer about 4 millimeters in length imprinted with millions of pillars only a few hundreds of nanometers (billionths of a meter) in height that collectively act as tiny lenses. These imprinted surfaces, dubbed metasurfaces, focus laser light to trap, manipulate and image individual atoms within a vapor. The metasurfaces can operate in the vacuum where the cloud of trapped atoms is located, unlike ordinary optical tweezers.

You can read the full article from NIST at this link. 

Synopsis

JILA Fellow Cindy Regal and her team, along with researchers at the National Institute of Standards and Technology (NIST), have for the first time demonstrated that they can trap single atoms using a novel miniaturized version of “optical tweezers” — a system that grabs atoms using a laser beam as chopsticks.

 In the new design, instead of typical lenses, the team used unconventional optics — a square glass wafer about 4 millimeters in length imprinted with millions of pillars only a few hundreds of nanometers (billionths of a meter) in height that collectively act as tiny lenses. These imprinted surfaces, dubbed metasurfaces, focus laser light to trap, manipulate and image individual atoms within a vapor. The metasurfaces can operate in the vacuum where the cloud of trapped atoms is located, unlike ordinary optical tweezers.

You can read the full article from NIST at this link. 

Principal Investigators