Many-body physics in long-range interacting quantum systems

Author
Abstract
<p>Ultracold atomic and molecular systems provide a useful platform for understanding quantum many-body physics. Recent progresses in AMO experiments enable access to systems exhibiting long-range interactions, opening a window for exploring the interplay between long-range interactions and dissipation. In this thesis, I develop theoretical approaches to study non-equilibrium dynamics in systems where such interplay is crucial.</p> <p>I first focus on a system of KRb molecules, where dipolar interactions and fast chemical reactions coexist. Using a classical kinetic theory and Monte Carlo methods, I study the evaporative cooling in a quasi-two-dimensional trap, and develop a protocol to reach quantum degeneracy. I also study the case where molecules are loaded into an optical lattice, and show that the strong dissipation induces a quantum Zeno effect, which suppresses the molecule loss. The analysis requires including multiple bands to explain recent experimental measurements, and can be used to determine the molecular filling fraction.\&nbsp;</p> <p>I also investigate a system of radiating atoms, which experience long-range elastic and dissipative interactions. I explore the collective behavior of atoms and the role of atomic motion. The model is validated by comparison with a recent light scattering experiment using Sr atoms. I also show that incoherently pumped dipoles can undergo a dynamical phase transition to synchronization, and study its signature in the quantum regime.</p>
Year of Publication
2017
Degree
Ph.D.
Number of Pages
169
Date Published
2017-04
University
University of Colorado Boulder
City
Boulder, CO
Advisors - JILA Fellows
PDF