
Many-body physics in long-range interacting quantum

systems

by

Bihui Zhu

B.S., Physics, Peking University

M.S., Physics, Chinese Academy of Sciences

A thesis submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Physics

2017



This thesis entitled:
Many-body physics in long-range interacting quantum systems

written by Bihui Zhu
has been approved for the Department of Physics

Prof. Ana Maria Rey

Prof. Murray J. Holland

Date

The final copy of this thesis has been examined by the signatories, and we find that both the
content and the form meet acceptable presentation standards of scholarly work in the above

mentioned discipline.



iii

Zhu, Bihui (Ph.D., Physics )

Many-body physics in long-range interacting quantum systems

Thesis directed by Prof. Ana Maria Rey

Ultracold atomic and molecular systems provide a useful platform for understanding quantum

many-body physics. Recent progresses in AMO experiments enable access to systems exhibiting

long-range interactions, opening a window for exploring the interplay between long-range inter-

actions and dissipation. In this thesis, I develop theoretical approaches to study non-equilibrium

dynamics in systems where such interplay is crucial.

I first focus on a system of KRb molecules, where dipolar interactions and fast chemical re-

actions coexist. Using a classical kinetic theory and Monte Carlo methods, I study the evaporative

cooling in a quasi-two-dimensional trap, and develop a protocol to reach quantum degeneracy. I

also study the case where molecules are loaded into an optical lattice, and show that the strong

dissipation induces a quantum Zeno effect, which suppresses the molecule loss. The analysis re-

quires including multiple bands to explain recent experimental measurements, and can be used to

determine the molecular filling fraction.

I also investigate a system of radiating atoms, which experience long-range elastic and dissi-

pative interactions. I explore the collective behavior of atoms and the role of atomic motion. The

model is validated by comparison with a recent light scattering experiment using Sr atoms. I also

show that incoherently pumped dipoles can undergo a dynamical phase transition to synchroniza-

tion, and study its signature in the quantum regime.

Note: This work was jointly supervised by Prof. Murray Holland.
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6.2 CD model: on-resonance intensity. (a) Angular distribution: due to the constructive

interference along the forward direction (θ = 0), the intensity is drastically enhanced

within a small angular region. (b)-(c) The intensities for three different directions

(θ = 0, π/10, π/2) are shown as a function of atom number, each normalized to

the value at N = 50. All are calculated for a spherical cloud of fixed size. The

right vertical axes label the intensity for θ = π/2, π/10. In (b) the OD and the

density are relatively low (when N = 500, τ=2,n0k
−3
0 =0.0015). The transverse

intensity increases ∼ N , while the forward intensity increases ∼ N2, showing a

collective enhancement for small window of θ around zero. Outside this narrow

angular window the enhancement disappears and the intensity becomes almost θ

independent as indicated by the identical behavior observed for two different angles,

θ = π/10 and π/2. In (c) the OD and density are relatively large (when N = 500,

τ=10, n0k
−3
0 =0.017). The rate at which the intensity increases with N slows down

in both the forward and transverse direction: with I ∼ N1 for θ = 0 and I ∼ N0.5

for θ = π/2, respectively. (d) On-resonance intensity as a function of OD: it is highly

suppresed at large OD. Here, the intensity is normalized to the corresponding value

at τ = 25 for each direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
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6.3 CD model: collective broadening. (a) FWHM linewidth as a function of OD. At small

OD, the FWHM increases linearly with OD, but as OD increases density effects set

in, multiple scattering events become relevant and the linewidth dependence on OD

is no longer linear. Two different atom numbers are used for the blue (N=1000) and

black lines (N=200), and the OD is varied by changing the cloud size. For the blue

line, n0k
−3
0 = 0.14 at τ=25, 0.003 at τ=2. For the black line, the density at the same

OD is doubled. With smaller density, the linewidth increases to a larger value in

the large OD regime. (b) The line shape at small OD values (τ=2, n0k
−3
0 = 0.002)

for different angles θ (θ is defined in Fig. 6.1(a)) is mainly Lorentzian. Here the

intensity is normalized to the on-resonance intensity for each θ. (c) At large OD

(τ=20, n0k
−3
0 = 0.06), the fluorescence line shape significantly broadens and stops

being Lorentzian. The brown dots for θ = 0 show the Lorentzian fit, which fails to

describe the line shape. At intermediate θ, a double-peak structure shows up. For

all panels, the cloud shape is spherical. . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.4 CD model: frequency shift. For small density, the shift calculated from the coherent

dipole model (blue line) increases linearly with density as predicted by the mean-

field theory. However, when density is large, there is a significant deviation from the

mean-field result. When motional effects are taken into account (red line, Doppler

width = 5Γ, see Sec. 6.4.1), the non linear suppression of the frequency shift with

density is less severe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



xxi

6.5 CD model: finite size scaling. (a) The linewidth is calculated for different number

of atoms at the same OD (τ=4 for N=3000) by varying the density (blue line with

circles). From N = 1000 to 5000 the linewidth is not obviously changed. In contrast,

by keeping the same density (n0k
−3
0 = 0.0037 for N=3000) while varying the OD

(magenta line with triangles), the linewidth keeps changing. (b) The frequency shift

is calculated for different number of atoms. By keeping constant density (magenta

line with triangles), the frequency shift remains almost constant, while for constant

OD (blue line with circles), there is a significant variation of the frequency shift with

N . Here the cloud aspect ratio is Rx : Ry : Rz = 2 : 2 : 1 [33]. . . . . . . . . . . . . . 72

6.6 CD model: effect of laser polarization. (a) Intensity distribution in the plane perpen-

dicular to the laser propagation direction, i.e., θ = π/2 for all φ’s (inset). φ = 0 is

the z-direction. Here, the incident laser is polarized along z. The intensity detected

along the laser polarization is suppressed compared to other directions. (b) and (c)

show the line shape and linewidth of light detected at θ = π/2, φ = 0. (b) At small

OD, the FWHM linewidth is below the natural linewidth. (c) As OD increases, the

linewidth is collectively broadened due to multiple scattering processes (Fig. 6.3(a)).

For all panels, degeneracy in excited levels has been assumed. . . . . . . . . . . . . 73
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6.8 RW Model. (a) Distribution of on-resonance intensity in the plane θ = π/2. Along

the direction where single scattering events are forbidden (φ = 0), the light inten-
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drop below Γ for small (purple squares). (c) Lin eshapes for different τps and angles
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velops a double-peak structure as the τp increases. Here, for all angles, the signal is

collected within a small angular region δθ = 5◦. The intensity is normalized to the

value at zero detuning for θ = 0 and τp=0.3, and the width of laser beam is 5 times

the Gaussian width of the atomic cloud. Here all τp are labeled as the value at ∆ = 0. 77
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6.14 Forward Scattering. (a) Comparison of forward scattering intensity versus angle

using a red and blue probe beam. The inset shows the setup used to block the

probe beam. After interacting with the atoms the probe beam is focused using a

lens, which also collimates the fluorescence from the atoms. We block the probe

beam using a beam stopper, which we translate perpendicular to the probe beam

to change the angular range of fluorescence collected by the detector, characterized

by the angle (θ) between x̂ and the edge of the beam stopper (see Ref. [33]). The

measured intensity, Ix,0 (θ), for each probe beam is normalized to the intensity at

θmax = 7.5 mRad. The dephasing caused by motion reduces the forward intensity

peak for the red transition. (b) Comparison of intensity in the forward direction,

Ix, versus intensity in the transverse direction, Iz. Both are varied by changing N .

All measurements are made at θ = 2 mRad (arrow in (a)) and normalized to the

intensity, Ix,0, for the atom number used in (a). (c) Linewidth broadening in the

forward direction measured by scanning the blue probe beam detuning, ∆, across

resonance. Example lineshapes for different optical depths (ODs) are shown in the

inset. Two different atom numbers are used, N = 1.7(2) × 107 (blue squares) and

N/4 (cyan triangles). The dashed line represents Γ for reference. All solid curves

are based on the full theory of coupled dipoles and the band in (c) is for a ±20%

atom number uncertainty. All errorbars are for statistical uncertainties. . . . . . . . 85
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6.15 Transverse Scattering. (a) Linewidth broadening for the blue transition in the trans-

verse direction for ŷ-polarization (open squares) and ẑ-polarization (open triangles).

(b) Intensity ratio, Iypol/Izpol, of ŷ-polarization to ẑ-polarization measured in the

transverse direction when a blue probe beam is used. For low optical depths single

particle scattering is dominant, and for single particle scattering almost zero intensity

is predicted for ẑ-polarized fluorescence as this polarization points directly into the

detector. (c) Linewidth broadening for the red transition in the transverse direction

for ŷ-polarized light showing a similar trend to the blue transition. This transition

is more sensitive to magnetic fields so a large magnetic field is applied to probe only

the m = 0 to m’ = 0 transition. All solid curves are based on the full theory of

coupled dipoles and the band in (c) is for a ±20% atom number uncertainty. All

errorbars are for statistical uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . 87

7.1 Weyl quasiparticles in 3D dipolar arrays. (a) Schematics of the 3D lattice potential

that traps an array of dipolar particles. The lattice is deep enough to pin the

particles, most of which are prepared in the J = 0 ground state (blue spheres). Only

a few particles are excited to the J = 1 states. Dipolar interactions between the

J = 0 and J = 1 states give raise to Weyl excitations. (b) Schematics of dipole

mediated interactions: An excited J = 1 state of one particle can be transferred

to another particle in the J = 0 state by dipole-dipole interactions (virtual photon

exchange is shown with a yellow wiggly line). Three types of allowed processes

include |00〉i |1σ〉j ↔ |1σ〉i |00〉j , |00〉i |10〉j ↔ |1,±1〉i |00〉j , and |00〉i |1,±1〉j ↔
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7.2 Weyl quasi-particle dispersion and eigenstates. (a) Brillouin zone for the simple cubic

lattice. (b) Dispersion along high-symmetry lines in the absence of magnetic field

(all energies are measured in units of (3/4)γ0/(k0a)3). (c) Dispersion in the presence

of magnetic field B = γ0/(k0a)3 demonstrating the existence of Weyl nodes (red

points) with linear quasiparticle dispersion near them. Each node is characterised

by the monopole charge ±1. In agreement with the fermion doubling theorem [181]

(the Nielsen-Ninomiya no-go theorem), there is an even number (six) of Weyl points

in the first Brillouin zone. (d) Dispersion in the horizontal (kx−ky) plane (shown by

blue color in panel (a)) containing the Weyl node near the R point. Quasiparticles in

this plane are similar to quasiparticles in graphene and are characterised by a non-

trivial Berry phase of π. The arrows show the pseudospin 〈σ̂〉 (the Pauli matrices

σ̂i act in the space of the angular-momentum projections Jz = 0 and Jz = −1).

(e) Dispersion along the (yellow in panel (a)) plane consisting of vectors k = (π +

kd/
√

2, π+ ky, 0.71π+ kd/
√

2) containing the Weyl point. Color shows the weight of

the |1− 1〉 state in the quasiparticle eigenstate, and arrows represent the pseudospin

〈σ̂〉. (f) Dispersion along the (green in panel (a)) vertical plane (ky − kz) containing

the Weyl point near the R point. For each momentum k the color represents the

weight of the |1− 1〉 state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
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7.3 Effects of disorder and dissipation on Weyl quasiparticles. (a) Real part of the quasi-

particle dispersion in the presence of dissipation (including spontaneous emission and

collective radiative decay). The parameters of the J = 1 → J = 0 transition corre-

spond to those of the electronic 3P0−3D1 levels of bosonic 88,84Sr atoms, trapped in

a magic optical lattice potential with a = 206.4nm [187] at unit filling. Momentum

k is measured in units π/a. (b) The upper bound on the inelastic scattering rate

estimated from simulating the full quasiparticle spectra including all allowed elastic

and inelastic dipolar processes. The dissipation is significantly suppressed near the

Weyl node (blue line). In striking contrast, the dissipation is enhanced close to the

Γ point (red line) due to the enhanced collective emission (superradiance). (c) Dis-

ordered case: Quasiparticle dispersion for a lattice with filling fraction f = 0.93 in

the limit of small dissipation k0a � 1 (the energy is measured in units γ0/(k0a)3).

The line thickness shows the inelastic scattering rate. . . . . . . . . . . . . . . . . . . 97

7.4 Observation of Weyl quasiparticles. (a) Momentum-selective Ramsey spectroscopy:

interfering Raman beams create an excitation with the angular momentum projection

Jz = −1 and with translational momentum k near the Weyl node (see text). After
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the Jz = 0 angular-momentum state. (b) Six quasimomenta near the Weyl node.

(c) The fraction of particles in the Jz = 0 state oscillates as a function of time t

with the frequency (E1
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Chapter 1

Introduction

1.1 Quantum many-body physics

Atoms and molecules are the building blocks of the objects surrounding us. However, it is

somehow amazing that collections of them exhibit behaviors not only drastically different from a

single atom or molecule, but also very different between each other. Such many-body behaviors

include a kaleidoscope of phenomena, ranging from superconductivity, which promises high perfor-

mance electronic devices, to light harvesting, which is essential for photosynthesis in green plants.

It is then natural to ask, how do these rich phenomena emerge from microscopic rules of quantum

mechanics? And perhaps more interestingly, how to engineer materials with certain properties and

how to harness the benefits of quantum physics? The understanding of these many-body behaviors

has been a long-sought-after goal of physics. Yet with so many degrees of freedom and myriads of

ingredients in different systems, it is a challenging task and many open questions remain.

Thanks to impressive experimental advances in the last two decades, systems of ultracold

atoms and molecules provide a new avenue for addressing these questions. Experiments nowadays

can access and selectively control internal levels of various types of bosonic and fermionic species,

trap them in flexible choices of confinement geometries and tune their interaction strength, even

with single-atom resolution [26, 143, 74, 121, 190]. In addition, experiments can control the degrees

of complexity in the system and separate the target objectives we want to study from the undesired

ones.

The power of these tools has been demonstrated in numerous studies that have, for instance,
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observed the crossover from a molecular BEC to a BCS superfluid of Cooper pairs [286, 204], the

Kibble-Zurek mechanism through a phase transition [138, 177], realized the paradigmatic Bose-

Hubbard model in optical lattices and observed the superfluid to Mott insulator quantum phase

transition [93, 83]. In those studies, the interaction between atoms is mediated by contact collisions,

which are intrinsically short-ranged. Only recently, experimental advances have enabled us to

access a variety of atomic, molecular and optical (AMO) systems with long-range interactions, thus

opening a window for the exploration of long-range interacting systems, which are ubiquitous in

nature but poorly understood. The use of AMO systems to gain a better understanding of long-

range interacting physics can not only boost our knowledge of fundamental quantum sciences but

also lead to important advances in quantum metrology and technology. This thesis aims to provide

a step forward towards reaching this goal. In the remainder of this chapter, the key subjects this

thesis revolves around will be briefly highlighted.

1.2 Long-range interactions

In systems such as trapped ions, Rydberg atoms, polar molecules and magnetic atoms, inter-

action decays with interparticle spacing in a power-law form V ∼ 1/rα, with smaller α indicating a

longer-ranged interaction. While there have been important developments on the understanding

of the nonequilibrium dynamics and equilibrium phases in systems with short-range interactions,

long-range interacting systems can exhibit richer but much less understood behaviors. For example,

Lieb and Robinson showed that in short-range interacting systems, information can only propagate

with a finite speed, and thus quantum correlations only exist within a linear “light-cone” [147].

This behavior has been experimentally confirmed in a one-dimensional array of ultracold bosonic

atoms [46]. However, as observed in an experiment with trapped ions that interact with long-

range Ising or XY spin-spin interactions, such a bound is violated [206]. A follow-up question is

then, if long-range interactions can facilitate entanglement generation and be useful for quantum

computation.

For isolated systems with short-range interactions, sufficient disorder can drive the system into
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a many-body localized phase, where thermal relaxation is prohibited. It has been conjectured that

such localization can not exist when the decay rate of interaction α is smaller than the dimension

of the system [176]. However, much is still unclear about the transport properties of systems with

long-range interactions.

The observation of many-body effects requires interactions to be stronger than other energy

scales, such as loss and heating. This is a particular aspect where long range interactions can bring

important opportunities. Let us consider for example the case of two particles sitting at adjacent

sites of a lattice. If they interact via short-range interactions, to see each other one of them needs

to first tunnel, then interact locally with the other and finally tunnel back. This type of tunneling

mediated interactions, known as superexchange interactions, can be very weak ∼nK. Their low

energy scales have been an important obstacle to experimentally observing them in the laboratory.

On the contrary, if they can interact at long distance via dipolar interactions, no motion is required.

This has facilitated their experimental observation as reported in recent experiments using KRb

molecules or magnetic atoms such as Cr and Er [278, 10, 61]. The strong dipolar interactions are also

experienced by Rydberg atoms, which are becoming an attractive platform for quantum information

processing. Dipolar interactions between polar molecules are anisotropic, and consequently can give

rise to geometrically frustrated interactions. Those are the underlying mechanism behind exotic

states of matter such as spin liquids, which are highly entangled and topologically nontrivial [11].

Moreover, dipolar interactions naturally give rise to spin-orbit coupling (SOC)—a key element for a

variety of topological phenomena, such as Majorana fermions and topological insulators [168, 279].

Spin-orbit coupling emerges in dipolar particles because dipolar interactions can couple external

angular momentum and internal states.

The fact that dipolar interactions can directly take place between frozen particles also means

that they could be a source of undesirable systematic effects in atomic clocks as the clocks become

sensitive enough to detect them [153, 45]. Further improving the accuracy of atomic clocks thus

demands a thorough knowledge of the underlying many-body dipolar effects. What is more, if

frozen dipolar arrays can exhibit rich physics due to the long-range and collective character of
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dipolar interactions, then one can anticipate the rich and complex physics that emerges when the

dipoles are allowed to move. The study of the interplay between motional and dipolar interactions

also constitutes a major part of this thesis.

1.3 Dissipation

To utilize many-body quantum mechanical systems for technological benefits, such as building

a powerful quantum computer, it is important to overcome processes that can smear out quantum

coherences. Those are in general unavoidable due to the coupling with environment. In AMO

systems, the main decoherence mechanisms typically come from two-body or three-body collisions

that induce number loss, spontaneous emission that changes internal level of an atom, and heating

from light scattering processes. Usually these effects are considered as detrimental since they

often result in an exponential decay of coherence. However, it is now appreciated that dissipative

processes can also give rise to nontrivial effects and even be used to generate entanglement between

particles [56, 148]. In fact, the interplay between dissipation and interactions is far from trivial,

especially when the interactions are nonlocal and collective. Superradiance and subrradiance are

two iconic examples. Superradiance, as will be shown in chapter 5, can drive the system into a robust

phase coherent state. Subradiance can maintain long-lived coherence and help to protect interesting

quantum states [248, 195, 20]. Understanding how robust phases can emerge as a consequence of

such interplay is highly desirable. However, dissipative many-body interacting quantum systems

are generically hard to model and understand. In this thesis we present some of the methods

developed to deal with several cases relevant to recent experiments.

1.4 Outline of this thesis

In this thesis, comprehensive studies are conducted on non-equilibrium many-body behaviors

in long-range interacting systems, especially where the interplay with dissipation is relevant.

Chapter 2 introduces the origin and form of dipole-dipole interactions and their remarkable

features, and provides the necessary background for the physics discussed in the following chapters.



5

The investigation of dipolar physics starts in Chapter 3, which discusses thermalization pro-

cesses of dipolar molecules, explicitly KRb, confined in a quasi-two-dimensional trap. The main

focus of the chapter is to determine possible ways to achieve evaporative cooling of the molecular

gas. For efficient evaporation it is important that inelastic collision processes, for KRb molecules

mainly coming from chemical reactions, become subdominant. We discuss the competition between

elastic and inelastic events and find regimes where cooling to quantum degeneracy could be pos-

sible. The calculations presented in this chapter can guide current experiments in their effort to

create high-phase-space-density gases of polar molecules.

Chapter 4 studies a different geometry, where molecules are confined in an optical lattice and

tunneling along one dimension is allowed. We develop theoretical models to describe the tunneling

dynamics in the presence of fast on-site losses. Our calculations reveal the important role played by

multiple lattice bands and are capable of reproducing the experimental observations. They explain

the suppression of molecule losses as a result of the quantum Zeno effect. Although in this chapter

we focused on KRb molecules, the theory presented is expected to be applicable to a variety of

other highly dissipative systems.

Alkaline earth atoms have important applications in quantum many-body physics and quan-

tum metrology. They also represent a system where the interplay between long-range dispersive

and dissipative interactions is relevant. All the following chapters of this thesis are devoted to

explore the collective phenomena that can result from these interactions.

Chapter 5 discusses a possible way to realize a quantum analogue of the phenomenon of

synchronization of classical oscillators in an array of incoherently pumped atoms. In this sys-

tem, macroscopic phase coherence is generated by long-range interactions. Quantum correlations,

entanglement, and the spectral properties of atoms in the coherent and incoherent phases are inves-

tigated in detail, providing an understanding of the open questions regarding the quantum aspect

of synchronization.

Chapter 6 develops theoretical models to study the fluorescence properties of an ensemble

of atoms driven by an external laser. Dipole-dipole interaction is shown to collectively affect the
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line center and linewidth of the fluorescence spectrum. It is also found that atomic motion can

significantly modify the spectral lineshape. We further show that, the theories presented can be

applied to successfully model a recent experiment done in 88Sr atoms.

In chapter 7, we show that the same model used to describe the fluorescence in Sr atoms

in chapter 6 predicts the emergence of Weyl quasiparticles in a dense array of frozen atoms in a

three-dimensional cubic lattice. Weyl excitations possess fascinating topological properties, and

remarkably, they are found in this implementation to be robust against dissipation, due to the

mechanism of subradiance.

The theoretical approaches developed here are applicable to general long-range interacting

systems, such as trapped ions, atoms trapped in photonic crystals, an ensemble of nitrogen vacancy

spin impurities in diamond, systems of Rydberg atoms, among others.

Publications summarized in this thesis:

Chapter 3:

Evaporative cooling of reactive polar molecules confined in a two-dimensional geometry

B. Zhu, G. Quémenér, A. M. Rey and M. J. Holland, Phys. Rev. A, 88, 063405, 2013.

Chapter 4:

Suppressing the loss of ultracold molecules via the continuous quantum Zeno effect

B. Zhu, B. Gadway, M. Foss-Feig, J. Schachenmayer, M. Wall, K. R. A. Hazzard, B. Yan, S. A.

Moses, J. P. Covey, D. S. Jin, J. Ye, M. Holland and A. M. Rey, Phys. Rev. Lett., 112, 070404,

2014.

Chapter 5:

Synchronization of Interacting Quantum Dipoles

B. Zhu, J. Schachenmayer, M. Xu, F. Herrera, J. G. Restrepo, M. J. Holland and A. M. Rey, New

J. Phys., 17, 083063, 2015.
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Chapter 2

Radiating dipoles

2.1 Dipolar interactions: origin and characteristics

The origin of electric dipole-dipole interactions can be formally derived by considering a

collection of atoms exposed to an electromagnetic field. Specifically, we consider an ensemble of

atoms exhibiting a J = 0→ J ′ = 1 transition driven by an electromagnetic field. The Hamiltonian

governing this system is [94, 45, 110, 187]

Ĥ = Ĥ0 + V̂ , (2.1)

Ĥ0 = ~ω0

∑
j,α

b̂α†j b̂
α
j + ~

∑
k,ε

ωkâ
†
kεâkε, (2.2)

V̂ = −
∑
j

D̂j · Ê(rj), (2.3)

D̂j =
∑
α

êαd(b̂α†j + b̂αj ), (2.4)

Ê(rj) =
∑
kε

gkεk(eik·râkε + H.c.), (2.5)

where the notation |α〉 is used to denote the three different excited levels, and j to label the atoms.

For convenience, the Cartesian basis is chosen, e = (x, y, z), |α〉 = |x〉 , |y〉 or |z〉. The latter are

related to the angular momentum basis by |x〉 = −(|+1〉 − |−1〉)/
√

2, |y〉 = −i(|+1〉 + |−1〉)/
√

2

and |z〉 = |0〉. b̂α†j = |αj〉 〈gj | is the raising operator from the ground state to the state |α〉 of the

jth atom, and d is the atomic dipole moment. ω0 and ωk denote the atomic angular frequency and

the photon angular frequencies, respectively. k (ε) is the momentum (polarization) of the photon.

ε0 is the vacuum permittivity, and V is the photon quantization volume.
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The evolution of the composite system of atoms and photons is described by

dρ̂af

dt
= − i

~
[V̂ ′(t), ρ̂af ], (2.6)

V̂ ′(t) = eiĤ0t/~V̂ (t)e−iĤ0t/~ (2.7)

=
∑
j,α

∑
k,ε

gkd(êα · ε̂)[b̂α†j âkεeik·rj+i(ω0−ωk)t + b̂α†j â
†
kεe
−ik·rj+i(ω0+ωk)t

+b̂αj âkεe
ik·rj−i(ω0+ωk)t + b̂α†j â

†
kεe
−ik·rj−i(ω0−ωk)t]. (2.8)

Given the large number of photon modes, the above equation is not very useful. Instead, we look

for an equation describing the system of atoms only. To this end, we can formally integrate Eq.

(2.6), and obtain

dρ̂af

dt
= − i

~

∫ t

0
dτ [V̂ ′(t− τ), ρ̂af(t− τ)]. (2.9)

Substituting this back to Eq. (2.6) leads to

dρ̂af

dt
= − 1

~2

∫ t

0
dτ [V̂ ′(t), [V̂ ′(t− τ), ρ̂af(t− τ)]]. (2.10)

This integro-differential equation gives the density matrix of the composite system via its depen-

dence on all its past history. To further simplify it, we adopt the Born-Markov approximation,

which assumes that the correlation between photon modes can be neglected, and that the atom-

field correlation time is short compared to the characteristic evolution time of the atomic system.

These assumptions are reasonable for many practical applications, considering that the large num-

ber of degrees of freedom of the photon field and the fact that the atom-field coupling is too weak to

significantly modify the field. In this thesis, we are only interested in cases where these assumptions

are valid. Thus we can factorize the density matrix as ρ̂af(t− τ) = ρ̂(t)⊗ |0〉 〈0|, where we also let

the photon field remain in the vacuum state |0〉, following from the above assumptions. ρ̂ is the

reduced density matrix of the atomic system, which evolves as

dρ

dt
= − 1

~2
Trf

[∫ ∞
0

dτ [V̂ ′(t), [V̂ ′(t− τ), ρ̂(t)⊗ |0〉 〈0|]]
]
, (2.11)
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where Trf is the trace over the photonic degrees of freedom. Substituting the expression for V ′(t)

into the above, we obtain

dρ

dt
= − 1

~2

∫ ∞
0

dτ
∑
j,l

∑
k,ε

g2
kd

2
∑
α,α′

(êα · ε̂)(êα′ · ε̂)

× {(b̂α†j b̂α
′
l ρ̂− b̂α

′
l ρ̂b̂

α†
j )eik·rjl+i(ω0−ωkτ)

+(ρ̂b̂α†j b̂
α′
l − b̂α†j ρ̂b̂α

′
l )e−ik·rjl+i(ω0+ωkτ)

+(b̂αj b̂
α′†
l ρ̂− b̂α′†l ρ̂b̂αj )eik·rjl−i(ω0+ωkτ)

+(ρ̂b̂α
′†
l b̂αj − b̂αj ρ̂b̂α

′†
l )e−ik·rjl−i(ω0−ωkτ)}, (2.12)

where rjl = rj − rl.

The summation over k can be replaced by an integral V
(2π)3

∫
k2dkdΩ. The angular part of

the integral
∫
dΩ can be explicitly implemented∫

dΩ±ik·r
∑
ε

∑
α,α′

(êα · ε̂)(êα′ · ε̂) = 4π
∑
α,α′

[A(k)(êα · ε̂)(êα′ · ε̂) +B(k)êα · êα′ ], (2.13)

A(k) = −sin(kr)

kr
+ 3

sin(kr)

(kr)3
− 3

cos(kr)

(kr)2
, (2.14)

B(k) =
sin(kr)

kr
− cos(kr)

(kr)3
+

sin(kr)

(kr)2
. (2.15)

These seemingly convolved forms come from the fact that photons have two different polarizations.

The integral over time can be performed using the following relations∫ ∞
0

dτei(ω0±ω)τ = πδ(ωk ± ω0)± iP.V. 1

ωk ± ω0
, (2.16)∫ ∞

0
dτe−i(ω0±ω)τ = πδ(ωk ± ω0)∓ iP.V. 1

ωk ± ω0
. (2.17)

where P.V. denotes the principal value. Carrying out the correspondent integrals result in

dρ̂

dt
= − i

~
[Ĥdd, ρ̂] + L[ρ̂]. (2.18)

In the above expression, the dissipator L comes from the integration over the Dirac Delta

function, which enforces ω = ω0. The Hamiltonian part comes from the principal value integral,
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which involves ω 6= ω0, accounting for the processes involving virtual photons. Explicitly, we have

Ĥdd = ~
∑
j,l

∑
α,α′

gαα
′

jl b̂α†j b̂
α′
l , (2.19)

L[ρ̂] =
∑
j,l

∑
α,α′

fαα
′

jl [2b̂α
′
j ρ̂b̂

α†
i − {b̂

α†
i b̂

α′
j , ρ̂}], (2.20)

with dipole-dipole interactions

gαα
′

jl = Re[Gαα
′

jl ], (2.21)

fαα
′

jl = Im[Gαα
′

jl ], (2.22)

where

Gαα
′

jl =
3Γ

4
[a(rjl)(êα · r̂jl)(êα′ · r̂jl) + b(rjl)(êα · êα′)], (2.23)

a(r) =
eik0r

k0r
+ 3i

eik0r

k2
0r

2
− 3

eik0r

k3
0r

3
, (2.24)

b(r) = −e
ik0r

k0r
− ie

ik0r

k2
0r

2
+
eik0r

k3
0r

3
. (2.25)

In the above equations, Γ =
k3

0d
2

3π~ε0 is the spontaneous emission rate, k0 = ω0/c is the wavevector

of the dipole transition, and êα is the dipole polarization direction corresponding to the transition

|g〉 → |α〉. Note that although the above equations were derived for the case of a J = 0 → J ′ = 1

transition, the procedure can be generalized straightforwardly to more general dipole transitions.

2.2 Near-field and far-field interactions

In this section we take a closer examination of the dipole-dipole interactions. In addition to

the dispersive interactions indicated by the real part of G, the coupling to radiation field results

in an imaginary part that represents the dissipative interactions. An illustration of these interac-

tions is shown in Fig. 2.1. The structures and spatial dependence of the dissipative and dispersive

interactions are generally very different. For dipole-dipole interactions, Γ sets the dominant en-

ergy scale, which depends on the dipole moment, and 1/k0 sets the relevant length scale in these

interactions. When k0r � 1, namely, when the interparticle spacing is much smaller than the

photon wavelength, gαα
′

jl diverges as ∼ Γ/(k0r)
3, while fαα

′
jl approaches a constant Γ, thus becomes
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negligible. Then in this limit the dipolar interactions reduce to the conventional electric dipolar

interaction, namely

Figure 2.1: Spatial dependence of dipole-dipole interactions. The diagonal parts of the imaginary
(fzz) and real (gzz) dipolar interactions between two dipoles are plotted, for three different inter-
particle spacings. While both types of interactions depend on geometry, they are nonidentical, and
the elastic interactions are highly sensitive to the spatial separation and orientation of the particles.
The maximum value for imaginary and real interactions for fixed |rab| is denoted as fmax and gmax,
respectively. The cone illustrates the magic angle, θm = arccos(1/

√
3), along which the elastic

interactions vanish.

V̂dd(r) =
∑
αα′

d2

4πε0r3
[(êα · êα′)− 3(êα · r̂)(êα′ · r̂)]b̂α†j b̂

α′
l . (2.26)

An exemplary system of this regime is ultracold KRb molecules prepared in the lowest two rotational

states.

In the opposite limit, k0r � 1, the dominant term in the dipole-dipole interactions is ∝ eik0r

r ,

which shares the same behavior as the Green’s function of a photon propagating in free space. This

is the far-field regime. In fact, it is also possible to modify the form of the interactions by selecting

the photon mode to which atoms are coupled. By loading atoms inside a single-mode Fabry–Perot

cavity, a collective interaction that does not decay with r can be generated. Tunable power-law

long-range interactionscan can also be engineered by coupling atoms to photonic crystals [69].

In the case where k0r ∼ 1, the near-field and far-field terms ∝ 1/r3, 1/r2, 1/r are of similar

magnitude. Neither the dissipative and dispersive part of the Hamiltonian, nor the near-field and

far-field components commute with each other, and thus this case corresponds to an interesting
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regime where all terms are relevant. Fig. 2.2 lists the properties of dipole transitions in several ex-

perimentally relevant systems. For alkaline earth atoms, such as Sr atoms, it is possible to probe the

intermediate regime where the system is affected by the complex interplay between all components

of dipole-dipole interactions. While this complexity imposes a challenge to theoretical treatment, it

also enables extra control knobs and allows for new phenomena. In a recent experiment, Sr atoms

have been loaded into a three-dimensional lattice, and the clock transition (1S0 →3 P0) has been

probed [38]. Even though the transition matrix element of the transition is ultranarrow (Γ ∼ mHz),

dipolar interactions might play an important role in the future performance of these 3D optical

lattice clocks.

+ 
- - 

+ 
Polar molecules 

Rotational levels  
N=0	  →	  N=1 (KRb) 

Vibrational levels  
v=0 →	  v=1 (KRb) 

d ⇠ 0.5Debye d ⇠ 0.004Debye

Alkaline earth atoms 

Sr 

Electronic orbitals 
1S0 →	  3P0  (87Sr) 

Electronic orbitals 
3P0 →	  3D1 (87Sr) 

d ⇠ 0.001Debye

k0a ⇠ 2 ⇥ 10�5 k0a ⇠ 2 ⇥ 10�2 k0a ⇠ 3.6 k0a ⇠ 0.5

d ⇠ 4Debye

Figure 2.2: Typical transitions relevant for dipolar interactions in several AMO systems. a is
the optical lattice spacing estimated from experimental realizations [260, 187, 249, 250]. Different
choices of internal states allow us to access different dipolar regimes .

In general, dipole-dipole interactions depend on the orientation of atomic dipoles. The off-

diagonal elements in Eq. (2.23), i.e., α 6= α′, couple states with different angular momentum

projections. This coupling is a quantum analog of the Einstein-de Haas effect [73], and can be also

seen as an effective spin-orbit coupling. As will be discussed in Chapter 7, it gives rise to Weyl

quasiparticles in a three-dimensional array of dipoles [248].
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2.3 Superradiance and subradiance

To illustrate some of the interesting phenomena arising from long-range dipole-dipole inter-

actions, we first consider a simplified case. We include only two levels in the transition, |g〉 and

|z〉, thus we can define σ̂−j = b̂zj = |g〉 〈z|. We also consider the case where dipoles are very close to

each other k0r � 1 and thus fzzij ∼ f . We focus on the dissipative part of the interactions. Then

only the second part of Eq. (2.18) is relavant, and the dissipator becomes

L[ρ̂] = f(2Ĵ−ρ̂Ĵ+ − Ĵ+Ĵ−ρ̂− ρ̂Ĵ+Ĵ−), (2.27)

where Ĵ± =
∑

j σ̂
±
j are collective angular momentum operators. Since the dissipator commutes with

the total angular momentum J , it is convenient to use a representation in the angular momentum

basis |J,M, β〉, where J = N/2, N/2 − 1, ...(Nmod2)/2 is the total angular momentum, M =

−J,−J + 1, ...J is its projection on the quantization axis, and β is an additional quantum number

to label the states with the same J and M . Overall, the total number of states equals 2N , thus for

general J < N/2, there are multiple states with the same J and M . The manifold with J = N/2

is the symmetrized Dicke states. The above dissipator induces decay only within the same J

manifold. An example of three atoms is given in Fig. 2.3, where the decay rates can be explicitly

calculated for all states. For states in the symmetrized Dicke manifold, the decay rate can exceed

the independent atom spontaneous emission rate. This phenomenon, known as superradiance, was

first theoretically predicted by Dicke in 1954 [67]. In fact, the decay rate of symmetrized Dicke

states is Γ(J +M)(J −M + 1), which is maximal for the state |N/2, 0〉 [67]. Physically this can be

understood from the fact that there are N indistinguishable decay channels, so the decay rate is

enhanced by ∼ N . For states in other manifolds, the individual atomic states are not symmetric,

and the decay rates can be even smaller than the rate of independent atoms. These are the so-called

subradiant states, which are less affected by the dissipative environment.

Outside the near-field limit, dipole-dipole interactions are not collective, but superradiant and

subradiant states still exist, though consisting of a mixture of the above Dicke states and requiring

more sophisticated theoretical approaches. Superradiance, which was originally conceived for a
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Figure 2.3: Dicke states for three atoms. |e〉 and |g〉 denote the excited and ground state in the
individual atom basis. Also indicated are the decay rates under the dissipator Ĵ+Ĵ−. States in red
colors decays at least at rate NeΓ, while the decay rate for states in blue (or black) color is < NeΓ
(or =0), where Ne denotes the number of excitations in the system.

small dense sample, can be observed experimentally in large and dilute ensembles. A demonstration

of this phenomenon is performed in a recent experiment with bosonic Sr atoms. We show in

chapter 6 that using a microscopic theory derived from Eqs. (2.19) and (2.20), we are able to

quantitatively describe the experiment. Collective emission has also been observed in various

experiments performed using photonic crystal waveguides and in cavity systems [86, 29, 182].

In contrast, subradiant states are usually difficult to prepare or probe in experiments with

many atoms. In chapter 7, we propose a protocol to realize subradiant states in a dipolar array,

without requiring complicated control of external fields. We also show there, that subradiance

stabilizes Weyl quasiparticles.



Chapter 3

Evaporative cooling of reactive polar molecules confined in a two-dimensional

geometry

3.1 Introduction

Polar molecules that exhibit strong dipole-dipole interactions have tremendous applications,

ranging from quantum many-body physics [253, 14, 136] and quantum information processing [66]

to precision measurements [282] and ultracold chemistry [41]. The parameter regime of interest

is generally ultralow temperature and high phase-space density, where novel quantum features

can emerge. In practice, it turns out to be difficult to cool molecules into the desired regime

using standard methods due to their complicated internal level structure. In the past few years,

significant experimental progress has been made towards this goal through the demonstration of a

method for preparing a gas of fermionic KRb molecules in the lowest electronic, vibrational, and

rotational quantum state, with a temperature T at the verge of quantum degeneracy (i.e. T/TF ∼ 1

where TF is the Fermi temperature) [179, 189, 180]. From this starting point, one would like to

further increase the phase-space density by implementing evaporative cooling—demonstrated to be

one of the most useful cooling methods for quantum gases [32, 58, 65].

A fundamental limitation to the effectiveness of evaporative cooling for polar molecules is

their fast losses. For KRb molecules, the losses arise mainly from exothermic chemical reactions,

i.e. KRb + KRb→ K2 + Rb2. In such reactions, molecules prepared in different internal states

can undergo barrierless collisions, with a lifetime of only ∼10 ms [180, 201]. In contrast, identical

fermionic KRb molecules at ultra-low temperature are protected by the p-wave barrier, which
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potentially results in a much slower reaction rate [180]. However, due to the anisotropic nature of

the dipole-dipole interaction, molecules of the correct orientation can be attracted towards each

other by experiencing “head-to-tail” collisions. As a result, the p-wave barrier can be greatly

suppressed. Such a loss mechanism is further facilitated by the application of a strong external

electric field that increases the dipole strength.

Significantly, these obstacles can be overcome by confining the molecules into quasi-two-

dimensional traps, which can be generated by a one-dimensional optical lattice. In this case, the

adverse collisions can be greatly suppressed and the reaction barrier effectively raised [60, 202,

200]. Furthermore, both the elastic and inelastic collision rates can be tuned by controlling the

applied external electric field and the trapping potential. Thus, while most previous experiments

implementing evaporative cooling were performed in three-dimensional geometries [123], here we

are explicitly interested in focussing on evaporative cooling in two-dimensions, with the anisotropic

collisions that arise from the dipolar interaction. A detailed understanding of this situation would

be beneficial for future experimental realizations.

Given this motivation, we theoretically investigate evaporative cooling of molecules. We use

both Monte Carlo (MC) simulations and models developed on the basis of kinetic theory to study

the efficiency of evaporative cooling with parameters applicable to current state-of-the-art KRb

experiments. This chapter is structured as follows. In Sec. 3.2 we explore the effect of anisotropic

collisions on evaporative cooling. In Sec. 3.3 we consider the effect of reduced trap dimension,

i.e. two-dimensional rather than three-dimensional traps. In Sec. 3.4 we apply the MC method to

determine the optimum evaporative cooling trajectory for KRb molecules. In Sec. 3.5 we discuss

the potential anti-evaporation mechanism arising from the energy dependence of the inelastic loss.
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3.2 Evaporative cooling with anisotropic collisions

3.2.1 Anisotropic elastic collisions between polar molecules

Evaporative cooling relies on removing particles with above-average energy and redistributing

the residual energy among the remaining particles by elastic collisions so that the temperature falls.

For polar molecules, the characteristic parameters that encapsulate the elastic scattering process

can be dramatically modified by the application of external fields. In the presence of an external

electric field, the dipole-dipole interaction between polar molecules can mix different partial waves

and give rise to highly-anisotropic scattering. Moreover, for identical fermions, the lowest total

angular momentum partial wave that has the correct symmetry is p-wave, so the elastic collisions

are anisotropic at ultralow temperature even in the absence of applied fields [87].

Considering current experimental conditions [60], we adopt the differential and total scat-

tering cross-section computed for KRb molecules in two-dimensions at an induced dipole moment

d = 0.2 debye as a function of the collision energy Ec. FIG. 3.1(a) shows the dependence of

differential cross-section on the scattering angle, φ, which is the precession angle of the relative

momentum during the collision. Scattering is mainly forward (0 or 2π) and backward (π). The

peak is more pronounced as the collision energy increases due to the larger contribution of higher

partial waves. This differential cross-section is well parametrized by the empirical function(
dλ(φ)

dφ

)
Ec

= λ
(
a(cosφ)2α + a′(cosφ)2α′

)
, (3.1)

with a, a′, α and α′ constants that are real and positive, and with the total cross-section given by

λ =

∫ 2π

0
dφ
dλ(φ)

dφ
. (3.2)

The dependence of λ on collision energy is shown in FIG. 3.1(b). Our best parametrization for

various scattering energies is given in Table 3.1. Note that at Ec ∼ 1 nK, the angular dependence

of the differential cross-section is well approximated by that of a p-wave collision, since a� a′ and

α ≈ 1.
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Figure 3.1: (a) Two-dimensional differential scattering cross-section for elastic collisions as a
function of the scattering angle. Four collision energies are shown; Ec = 1 nK (blue disk), 10 nK
(green diamond), 100 nK (red triangle), and 1 µK (black star). The induced dipole moment
is d = 0.2 debye and the harmonic frequency of the one-dimensional confinement potential is
ν = 23 kHz, The solid lines show the empirical formula Eq. (3.1). (b) Total scattering cross
section for elastic collisions (solid line) and reactive processes (dashed line) as a function of the
collision energy for an induced dipole moment of d = 0.2 debye and a one dimensional confinement of
ν = 23 kHz. The ratio of elastic to reactive is indicated at four different collision energies; Ec =1 nK
(blue point), 10 nK (green point), 100 nK (red point), and 1 µK (black point). (c) Number
of collisions κ required for thermalization for different differential scattering cross-sections. The
magenta solid line shows Eq. (3.10). The purple circles are results from the MC simulations, and
are shown with their small statistical error bars. The four symbols (blue disk, green diamond, red
triangle, black star) correspond to the same energies as (a).

Ec(nK) a a′ α α′ λ(10−6cm)

1 0.31 0.0005 1.00 2.19 0.38

10 0.27 0.06 1.00 2.09 3.67

100 0.24 0.21 1.19 7.03 5.99

1000 0.34 0.40 2.47 26.40 3.42

Table 3.1: Derived parameters from the fit of Eq. (3.1) for the scattering energies shown in Fig. 3.1.

3.2.2 Thermalization rate

The thermalization rate characterizes the timescale needed for a system to redistribute energy

after an evaporative cut. To quantitatively investigate the thermalization under anisotropic colli-

sions, we adopt the typical experimental procedure of cross-dimensional thermalization [173, 64].

In order to isolate the effect of anisotropic elastic collisions, we will neglect inelastic collisions

completely for these thermalization calculations.

Consider a gas of N molecules in a two-dimensional harmonic trap with a slight initial
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imbalance of temperatures along each axis. This initial condition can be prepared in experiment

by parametric heating of an equilibrium gas [173]. We define an effective temperature Ti in the

ith direction in terms of the total energy Ei by kBTi = Ei/N = p2
i /(2m) + mω2

i x
2
i /2, where ωi

is the trapping frequency, m is the molecule mass, and p2
i /(2m) and mω2

i x
2
i denote the average

kinetic energy and potential energy. We assume that the system is well described by the Boltzmann

distribution

f0(x,p) = n0 exp
(
−
∑
i

(
p2
i

m
+mω2

i x
2
i )/(2kBTi)

)
, (3.3)

where n0 guarantees normalization, i.e.

1

(2π~)2

∫
d2xd2p f0(x,p) = N . (3.4)

Without loss of generality, we assume Ty = (1 − ξ)Tx with ξ > 0. Elastic collisions lead to an

exchange of energy between the x and y directions and reduce the relative temperature difference.

The rate of such change is [205]

dEx
dt

= NkB
dTx
dt

=
1

2m(2π~)4

∫
d2xd2p1d

2p2dφ
′

× f0(x,p1)f0(x,p2)|p1 − p2|
dλ(φ′)
dφ′

∆Ex. (3.5)

This involves the energy change per collision given by

∆Ex =
1

4m
|p1 − p2|2(cos2φ′ − cos2φ), (3.6)

where φ and φ′ are the angles between the relative momentum and the total momentum before and

after the collision respectively. The period of time it takes to thermalize, τ , can be defined as the

1/e decay time of the temperature difference, so that

dTx
dt

= −1

τ
(Tx − T0), (3.7)

where T0 = (Tx+Ty)/2 is the temperature at equilibrium. From Eq. (3.5) and Eq. (3.7), we obtain

the average number of elastic collisions required for the system to thermalize, κ, in the following

way. We begin by defining the collision rate γ

γ =
λ

m(2π~)4

∫
d2xd2p1d

2p2 f0(x,p1)f0(x,p2)|p1 − p2|, (3.8)
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so that κ ≡ limξ→0(τγ), independent of the initial temperature and trapping frequencies [64, 207].

Combining Eq. (3.3)–Eq. (3.8) with the form of the differential cross-sections given in Eq. (3.1)

leads to the following result:

κ =
8

15
√
π

{
a

2α+ 2

Γ (α+ 1/2)

Γ(α+ 1)

+
a′

2α′ + 2

Γ (α′ + 1/2)

Γ(α′ + 1)

}−1

. (3.9)

When a′ = 0 and α′ = 0, this reduces to the particularly simple expression

κ =
16

15
(2α+ 2), (3.10)

which corresponds to the differential cross-section

dλ(φ)

dφ
= a cos2αφ. (3.11)

In order to interpret these results, for each scattering energy Ec, we calculate κ using Eq. (3.9), and

plot the result on the (α, κ) line, as prescribed by Eq. (3.10), with markers (star, square, triangle,

diamond, and disk), as shown in FIG. 3.1(c). The use of the linear relationship between α and κ

is supported by results obtained from MC simulations, as described in Appendix A.1, utilizing

the differential cross-section form of Eq. (3.11) directly (purple circles). The exception is at large

α, where the assumption adopted in deriving Eq. (3.9)—namely that of a Boltzman distribution

parametrized by an effective temperature—becomes poor when the thermalization is too slow.

The calculations demonstrate a strikingly strong dependence on the anisotropy of the colli-

sions for rethermalization. For α = 0 the collisions are isotropic (s-wave like) and κ ≈ 2.1. This

compares with κ ≈ 4.3 at α = 1, which describes p-wave collisions. For Ec = 1µK we find κ ≈ 9.7,

which is many times that for isotropic collisions, implying a significant increase in the number

of collisions required for rethermalization. One may have anticipated this since the differential

cross-section is sharply peaked in the forward and backward directions and energy is not efficiently

redistributed. Also note that the outcome for the differential cross-section of KRb with Ec =1 nK is

very close to that from Eq. (3.10) with α = 1, indicating p-wave elastic collisions between identical

fermions at ultra-low temperature.
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3.2.3 Evaporation with anisotropic collisions

In evaporative cooling experiments, inelastic collisions compete with elastic collisions, and

thus a slow thermalization rate gives rise to a reduction in cooling efficiency. In this section, we

use MC simulations to quantify the efficiency of evaporative cooling in two ways: by the achieved

increase in phase-space density Ωf/Ω0 at the expense of losing a certain portion of the molecules in

the trap (see FIG. 3.2), and by the time required for the temperature to go down and Ω to increase

by a given amount (see FIG. 3.3).
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Figure 3.2: Increase in phase space density vs truncation parameter η for different dλ(φ)
dφ . Here Ω0

is the initial phase-space density, and the final phase space density, Ωf , was calculated when the
ratio of molecule numbers was Nf/N0 = 0.1. Blue circles: dλ(φ)

dφ =const; red crosses: (dλ(φ)
dφ )Ec=1µK;

green squares: (dλ(φ)
dφ )Ec=100 nK; black dotted line: critical phase space density Ωc for quantum

degeneracy.

.

In these simulations, we assume an instantaneous removal of all particles with energy greater

than a cut-off energy. The cut-off energy, εt, evolves during the evaporation trajectory with the

constraint that a truncation parameter, η = εt/E, is kept constant, where E is the average energy

of the nonequilibrium distribution. The comparison between isotropic and anisotropic collisions is

made by calculating the evaporation trajectory for a variety of differential cross-sections, starting

with the same initial molecule number. To simplify the comparison, for both elastic and inelastic

collisions, we keep the total cross-sections constant while varying the differential cross-section for
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Figure 3.3: Trajectories of evaporation for (a): (dλ(φ)
dφ )Ec=1µK at η ∼ 3.4 and (b): dλ(φ)

dφ =const at
η ∼ 4.3, under the same initial conditions as in FIG. 3.2. In comparison with (a), it is apparent
that in (b) the temperature T drops faster and the phase-space density Ω increases much more
rapidly.

elastic scattering. We also assume the cross-sections to be energy independent.

The molecules are initially simulated from a truncated Boltzmann distribution utilizing the

cut-off energy [155] εt:

f(x,p) = n′0 exp
(
−(
p2

m
+mω2x2)/(2kBT )

)
×Θ
(
εt − (

p2

2m
+

1

2
mω2x2)

)
, (3.12)

where Θ is the Heaviside function, n′0 is the normalization, and T is the initial temperature, held

fixed for different simulations. Although the energy distribution of the molecules is intrinsically

non-equilibrium here, we may assign it a phase-space density, Ω, as that of the corresponding

equilibrium distribution that has the same molecule number and average molecule energy.

In FIG. 3.2, Ω is plotted for the case of evaporation trajectories in which 90% of the initial

molecules are lost. For anisotropic collisions, we calculate evaporation trajectories for the differ-

ential cross-sections for Ec = 100 nK and Ec = 1µK given in the subsection 3.2.2. The results

presented in FIG. 3.2 show that the maximum efficiency achievable by varying η is much lower
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for anisotropic collisions than that achievable with isotropic collisions. In addition, the maximum

efficiency is reached at smaller η. This suggests, for example, that if εt is set by the trap depth

in an experiment, a shallower trap is desirable for evaporating a gas with anisotropic collisions,

compared with evaporating a gas with isotropic collisions, at the same temperature and collision

rate.

For these calculations, the inelastic to elastic collision rate ratio was held fixed at ζ = 1/200.

This was chosen based on typical experimental conditions for KRb molecules (see Sec. 3.4). The

value of ζ does not qualitatively change the above comparisons; it only changes the shape of each

curve [123], and as one would expect, the maximum efficiency and the corresponding η decreases

as ζ increases.

In FIG. 3.3, we plot the time-dependent trajectories of evaporative cooling for isotropic

collisions with η = 4.3, and for anisotropic collisions for Ec = 1 µK with η = 3.4. These values

of η were chosen such that Ωf/Ω0 is maximum in FIG. 3.2, and thus most efficient. It is evident

from this plot that to reach the same increase in Ω and decrease in T , it takes much shorter time

with isotropic collisions (FIG. 3.3(b)). This indicates a lower efficiency with anisotropic collisions,

consistent with the results of FIG. 3.2.

3.3 Evaporative cooling in 2D traps

Physics in two-dimensional geometries can often be quite different from that in three-dimensions.

Unlike many previous evaporative cooling experiments, KRb molecules need, in general, to be con-

fined in traps with reduced dimensionality to be stable. Such a configuration was also used to

evaporate Cs atoms [105]. Here, we study the effect of reduced dimensionality on evaporative

cooling by comparing the efficiency in two-dimensional and three-dimensional traps.

The previous section showed that the existence of highly-anisotropic collisions slows down

thermalization and decreases the efficiency of evaporative cooling. A calculation analogous to Sec.
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3.2.2 but for a three-dimensional harmonic trap gives

κ =
5

6
(2α+ 3), (3.13)

which implies κ = 2.5 when α = 0 (isotropic collisions). This result may suggest a potentially

faster thermalization rate and more efficient evaporation in a two-dimensional harmonic trap when

compared with a three-dimensional harmonic trap with everything else held fixed. However, such

a conclusion based soley on Eq. (3.13) would be premature, since the density of states depends

on the dimensionality. Specifically, it was found for the comparison between quadratic potentials

and linear potentials in three dimensions that changing the density of states can also change the

evaporative cooling efficiency [123].

To incorporate such differences, we use MC simulation and a truncated-Boltzmann (TB)

method based on kinetic theory (see Appendix A.2) to calculate the evaporation trajectories. Here,

we consider harmonic traps and isotropic energy-independent collisions in order to isolate the effect

of dimensionality. Following a similar procedure to that of the previous section, we calculate

ln(Ωf/Ω0) at fixed Nf/N0, under equivalent initial conditions for both types of traps. As shown

in FIG. 3.4, both the MC and TB approaches show a lower achievable increase in the phase-space

density for a two-dimensional harmonic trap. This suggests that evaporative cooling is intrinsically

less efficient in two-dimensional traps. The discrepancy between MC and TB, which increases for

smaller η, is caused by the discrepancy between the form of the energy distributions, which for TB

is constrained. At smaller η, the trucated Boltzmann distribution deviates significantly from the

actual distribution of molecules, as calculated in MC.

3.4 Evaporative cooling of KRb molecules

In a quasi-two-dimensional trap, the elastic and reactive collisions between KRb molecules

both depend on both the strength of the external electric field and the confinement induced by the

lattice. Under current trapping conditions in experiments, a favorable ratio between the elastic

and reactive processes can be reached at a moderate eletric field [60, 201]. We show in FIG. 3.1(b)
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Figure 3.4: Comparison of the efficiency of evaporative cooling in two-dimensional (2D) and three-
dimensional (3D) harmonic traps. ln(Ωf/Ω0)’s are calculated at Nf/N0 = 0.1, and ζ = 1/200. Red
(blue) line: 3D (2D) harmonic trap from method in Appendix A.2; red squares: 3D harmonic trap
from MC simulation; blue disks: 2D harmonic trap from MC simulation; blue (red) dotted line: Ωc

for a 2D (3D) trap.

the total scattering cross-section for the elastic process and reactive process of KRb molecules at

d = 0.2 debye with the confinement along the lattice direction given by ν = 23 kHz. In the ultracold

regime, the elastic cross-section scales as E
3/2
c , while the reactive cross-section scales as E

1/2
c [146].

Furthermore, elastic processes are found to be generally faster than reactive processes, supporting

the potential for successful evaporative cooling [200] while the large elastic cross-section favors fast

rethermalization.

The quantitative knowledge of the elastic and reactive collisions between KRb molecules

allows us to apply MC simulation with realistic experimental parameters. In FIG. 3.5, we show

evaporation trajectories in a 2π × 20 Hz two-dimensional gaussian trap. For this simulation, we

have assumed the instantaneous removal of energetic molecules above the cut, as in Sec. 3.2.3

and Sec. 3.3. We also assume that the inelastic losses are only due to the reactive collisions that

are discussed above. The initial temperature was chosen to be within the accessible regime of

experiments. The results show that a considerable increase in phase-space density can be achieved

via evaporative cooling. We note that there are further experimental effects that can in principle

reduce the achieved phase-space density increase from that calculated here, such as the finite rate
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of removing energetic molecules and other sources of loss and heating. On the other hand, progress

towards realizing deeper lattices ( i.e., ν > 23 kHz), can potentially reduce ζ and thereby enhance

the cooling efficiency.
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Figure 3.5: Evaporative cooling trajectories for KRb molecules inside a 2D trap of 2π × 20 Hz,
with scattering cross-sections as computed in FIG. 3.1(b). The initial temperature was ∼ 200 nK,
with an initial-phase space density Ω0 ∼ 0.1Ωc, and η = 3.8.

.

3.5 Anti-evaporation in quasi-2D

Fast inelastic collisions are disadvantageous for evaporative cooling, since they not only reduce

the molecule number, but can also cause heating known as “anti-evaporation” [180]. Since the

ability to identify the relative importance of different heating mechanisms is important in the

design of experiments, in this section we quantitatively investigate heating due to two-body inelastic

collisions.

Anti-evaporation arises from the fact that inelastic collisions are more frequent in the high

density region of the trap (density-selection). Molecules there have on average total energies that

are less than the ensemble average. Thus one may anticipate evaporative heating rather than

evaporative cooling to occur. In competition with this, however, is the effect that the inelastic
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collision cross-section is dependent on the collision energy, i.e., molecules with energies higher than

the average are more likely to engage in a reactive collision and be removed (velocity-selection). In

three-dimensional harmonic traps, the density-selection mechanism wins over the velocity-selection

mechanism and consequently there is net heating caused by p-wave two-body losses [180]. In two-

dimensional trapping potentials, however, this is not necessarily true as we now show.

We consider a two-dimensional harmonic trap and assume a Boltzmann distribution as given

in Eq. (3.3), for which the number loss rate is

dN

dt
= 2

∫
d2xd2p1d

2p2λ(Erel)vrelf0(x,p1)f0(x,p2), (3.14)

and the corresponding energy loss is

dE

dt
=

∫
d2xd2p1d

2p2λ(Erel)vrelf0(x,p1)f0(x,p2)(E1 + E2), (3.15)

where Erel and vrel are the relative energy and velocity between the two coliding molecules, and

E1 + E2 is the total energy. From Eq. (3.14) and Eq. (3.15), with λ(Erel) ∝ E1/2 for p-wave

collisions (Sec. 3.4), which dominates for ultracold identical fermionic KRb molecules [60], one can

derive the energy loss per molecule, which is given by

dE

dN
= 2kBT. (3.16)

This is precisely equal to the average energy per molecule. Thus we have a remarkable result that

there is no net heating or cooling in a pure two-dimensional harmonic trap due to reactive loss. In

contrast, a similar argument leads to heating for three-dimensional traps, as shown in Ref. [180]

(heating rate there ∼100 nK/s).

However, we emphasize that Eq. (3.14) to Eq. (3.16) only takes into account the two-body

inelastic collsions and assumes a Boltzmann distribution, which implies sufficiently fast rether-

malization. Note that at zero electric field, the elastic collisions that lead to thermalization are

infrequent and can generally be neglected in experiments with KRb molecules [180], thus a Boltz-

mann distribution is not guaranteed.



29

To study possible effects caused by the deviation from a Boltzmann distribution during the

evolution, we use MC simulations to calculate the molecule loss and temperature change in a

two-dimensional harmonic trap, assuming only two-body inelastic processes between molecules.

The results are plotted in FIGs. 3.6(a) and (b) respectively. The reactive collision rate is taken

from FIG. 3.1 (b). The heating rate is found to be very small, illustrating a drastically different

quantitative behavior from that seen in three-dimensional traps.
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Figure 3.6: Heating due to two-body losses in a two-dimensional harmonic trap. Here (a) and (b)
show the MC result in a two-dimensional harmonic trap where all molecules are in the lowest band
of the lattice potential. The results for (c) and (d) are obtained with the master equation approach.
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temperature is chosen to be around 800 nK, so that when two bands are included, there are ∼25%
of molecules on the second band, and when three bands are included, there are ∼19% of molecules
on the second band and ∼6% on the third band.

.

The periodic array of two-dimensional pancake traps for confining KRb molecules is generated

by a one-dimensional optical lattice [60]. This forms energy bands separated by ∼ ~ωz, where

ωz = 2πν and ν is the frequency of the harmonic approximation of the lattice potential. When the

temperature is sufficiently low, the longitudinal degree-of-freedom along the lattice axis is effectively

frozen out and one may consider solely the lowest band. However, as the temperature increases,
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higher bands can be populated. For example, at T ∼ 800 nK in a lattice of ν = 23 kHz, about 25%

of molecules occupy higher bands.

With multiband population, collisions between molecules can occur as inter-band or intra-

band, as shown in FIG. 3.7. The inter-band collisions involve additional degrees-of-freedom along

the longitudinal direction (see FIG. 3.7(b)), and thus do not satisfy the assumptions leading to

Eq. (3.16) and can give rise to anti-evaporation heading [180].

Figure 3.7: Collisions between molecules in a quasi-2D trap. (a) intra-band collisions, occuring at
rate Γ̃(1). (b) inter-band collisions, occuring at rate Γ̃(2) (see Appendix A.3).

.

We adopt a many-body Hamiltonian to describe these p-wave inelastic collisions [119, 243,

162]

Ĥp =
3πb3p~2

m

∫
d3r[(∇Ψ̂†(r))Ψ̂†(r)− Ψ̂†(r)(∇Ψ̂†(r))]

·[(∇Ψ̂(r))Ψ̂(r)− Ψ̂(r)(∇Ψ̂(r))], (3.17)

where Ψ̂(r) is a fermionic field operator that annihilates a molecule at position r, and b3p is the

inelastic p-wave scattering volume. The value of bp for KRb molecules can be found from the

reactive cross-section calculated in the previous section. In a trap with transverse confinement ωr

and longitudinal confinement ωz, the field operator can be expanded in the basis of non-interacting

harmonic oscillator eigenstates φrn and φzn as:

Ψ̂(r) =
∑
n

ĉnφ
r
nx(x)φrny(y)φznz(z), (3.18)
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where n = (nx, ny, nz) enumerates the mode number along each dimension, and ĉn annihilates a

fermion in mode n.

Considering elastic collisions to be negligible, we assume there is no change of modes during

the losses, i.e., a molecule initially in mode n remains in mode n. With such an assumption,

each molecule can be labeled with its mode indices, and for identical fermions, there are no two

molecules with the same indices. The two-body losses can then be accounted for by jump operators

Ân,m =
√

Γn,mĉnĉm, which remove two molecules in mode n and m at a rate Γn,m determined by

the corresponding p-wave two-body inelastic collisions Eq. (3.17) (see Appendix A.3 for details).

When nz = mz, these correspond to the intra-band collisions (FIG. 3.7(a)); when nz 6= mz, these

correspond to the inter-band collisions (FIG. 3.7(b)).

The dynamics can then be described by the quantum master equation

dρ̂

dt
=

1

2

∑
n,m

(2Ân,mρ̂Â
†
n,m − Â†n,mÂn,mρ̂− ρ̂Â†n,mÂn,m). (3.19)

Since we have assumed that the molecules do not change modes during evolution, in order to solve

Eq.( 6.1), we can use ρ̂ =
∏
i

∑
n ρ

i
n,nδ(n − ni)|n〉〈n|, where i = 1, 2, 3...N represents the ith

molecule that initially is in mode ni, N is the initial total number of molecules. Since the quantum

jumps here correspond to the reactive loss of pairs of molecules, the off-diagonal coherence terms

have been dropped. The relevant equation of motion under these assumptions is

dρi
ni,ni

dt
= −ρini,ni

∑
j 6=i

Γni,mjρ
j
mj ,mj . (3.20)

The total molecule number at time t is thus

N(t) =
∑
i

ρini,ni(t), (3.21)

and the average temperature can be found from

T (t) =
1

N(t)kB

∑
i

~ωr(nix + niy)ρ
i
ni,ni(t). (3.22)

Furthermore, the initial population in different bands can be determined by

Nα

N
=

e−(1/2+α~ωz)/kBT∑
α e
−(1/2+α~ωz)/kBT

, (3.23)
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where α = 0, 1, ... is the band index. For the initial condition, the density matrix is simulated

such that Nα molecules are assigned to band index niz = α, and the transverse modes nix, n
i
y are

randomly generated from a Boltzmann distribution with given initial temperature T . The final

result is averaged over many different simulations. In order to show the effect of including different

number of bands, we assum a cut-off in the highest band index. In our calculation, if a total of nmax

bands are taken into account, the population of the lower nmax − 2 bands is determined according

to Eq. (3.23). All of the reminder molecules are assigned to the highest populated band, nmax− 1.

In FIG. 3.6(c) and (d), we show the result with temperature T = 800 nK and lattice fre-

quency ν = 23 kHz, which are typical for KRb experiments. While the small amount of multiband

population does not lead to a significant change in the loss rate for molecules (FIG. 3.6(c)), there

can nevertheless be significant heating. In consequence, it is necessary to greatly suppress the

population outside the lowest band for evaporative cooling experiments to be effectively performed

in quasi-two-dimensional geometries when reactive loss of the form considered here is present.

3.6 Conclusion

Motivated by recent experiments of KRb molecules, we have applied MC simulation meth-

ods and semianalytical approaches to perform a detailed study of evaporative cooling properties

in two-dimensional traps with anisotropic collisions. We have quantitatively analyzed the depen-

dence of the thermalization rate on the anisotropy of the elastic collisions. Specifically, for our

calculations of the differential and total scattering cross-section for KRb molecules confined in a

quasi-two-dimensional trap, we were able to investigate the efficiency of evaporative cooling for the

practical parameter regime of recent experiments. The dipole-dipole interactions resulted in highly

anisotropic elastic collisions which were disadvantageous for evaporative cooling when compared

with isotropic collisions.

The reduced dimension of the trapping potential further decreased the efficiency of evapora-

tive cooling when compared with conventional evaporation procedures for three-dimensional traps.

Nevertheless, we showed that the phase space density of KRb molecules can potentially be increased
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using evaporative cooling with parameters that are accessible under current experimental condi-

tions. Although this could be limited by further complicated real-world experimental details that

we have not considered, it is also the case that future experimental progress in increasing the ratio

between the elastic and inelastic collision rates could lead to more efficient evaporative cooling of

KRb molecules.

We also developed theoretical models to investigate the anti-evaporation induced by two-

body losses. Our results highlighted the distinctions between the evaporation processes in two-

dimensional and three-dimensional geometries through the role of multiband excitations in a quasi-

two-dimensional trap. We point out that the importance of multiband physics has also been

addressed in recent literature [233, 161, 267].



Chapter 4

Suppressing the loss of ultracold molecules via the continuous quantum Zeno

effect

Fast inelastic two-body losses, induced for example by the exothermic chemical reactions

discussed in the previous chapter for KRb molecules, impose a severe limit on molecule life-

times [188, 180, 59]. For the use of ultracold molecules as a quantum resource for the exploration

of rich physical phenomena, it is crucial to find appropriate means to overcome losses. Recent

experiments with KRb molecules [278] have reported an inhibition of losses when the molecules

are confined in an array of one-dimensional tubes with a superimposed axial optical lattice along

the tubes (Fig. 4.1). Similar loss suppression by strong dissipation was previously observed in

bosonic Feshbach molecules [244]. Extending the molecules’ lifetime over timescales much longer

than those determined by tunneling opens a path for the exploration of itinerant magnetism and

other many-body phenomena arising from the interplay between dipolar interactions and motion,

even in these in highly reactive systems.

In Chapter 3, we have shown that free KRb molecules react rapidly. In a lattice, the two-body

inelastic collision rates are larger than all other lattice energy scales, including the band separation

energy. Consequently, this system is an example of a strongly correlated system that defies simple

treatment in terms of single-particle physics. As such, description of the loss suppression based

on the assumption that inelastic interactions do not affect the single-particle wave-functions is

incorrect [161]. Evidence of this issue was reported in Ref. [278] where a heuristic “single-band”

treatment of the losses was found to significantly overestimate the molecule filling fraction f .
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Figure 4.1: (a) A 50:50 mixture of fermionic KRb molecules in two rotational states, |0, 0〉 (red)
and |1,−1〉 (blue), is prepared in a deep 3D lattice, which is suddenly made shallow along one
dimension (y). Along y, molecules tunnel with a rate J/~ and have a large on-site loss rate Γ0

because of chemical reactions. (b) In the Zeno regime, ~Γ0 � J , doubly occupied sites are only
virtually populated, and the loss occurs at a significantly slower rate Γeff � Γ0 for molecules on
adjacent sites. For KRb, a multiband analysis of this process is required for all experimental lattice
parameters.

Here, we develop a theoretical description of the dissipative dynamics that non-perturbatively

includes three dimensional multi-band effects. Our analysis allows us to attribute the observed loss

suppression to the continuous quantum Zeno effect [170, 109, 76, 99, 82] – a suppression of coherent

transitions due to strong dissipation – and to generalize previous single-band treatments [82, 16]

to the strongly dissipative regime. We perform systematic measurements of the KRb lifetime

under controlled and reproducible lattice conditions that allow us to validate the calculations. The

observed dependence of the loss rate on lattice parameters is consistent with Ref. [278] and is

fully reproduced by the multiband theory. Moreover, the inclusion of multiple bands reduces the

determined filling f by a factor of ∼5, giving results consistent with the filling predicted by Ramsey

spectroscopy measurements of molecules pinned in a 3D lattice and prepared under similar initial

conditions [278, 100].

The multiband calculations are first applied to derive a simple rate equation (RE) for two-

body losses, which assumes instantaneous redistribution of molecules between collision events. We

show that the RE can describe the measured dissipative dynamics fairly well over a broad range

of lattice parameters, but fails for the deepest lattice configurations. We develop a simple and

unified theory capable of describing the loss dynamics in all parameter regimes based on a mean-
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field (MF) approximation of the many-body master equation. We validate the MF formulation by

comparing it to a numerically exact time-dependent density matrix renormalization group method

(t-DMRG) [259, 55, 266], which we combine with a quantum trajectory technique [39, 172, 72].

The MF, t-DMRG, and experimentally observed loss dynamics quantitatively agree.

4.1 Experiment with KRb molecules

The experiment begins by loading ∼104 fermionic KRb ro-vibrational ground-state molecules,

|N = 0,mN = 0〉, into the lowest band of a deep 3D cubic optical lattice with lattice constant

a = 532 nm. Here, N is the principal rotational quantum number and mN is the projection onto

the quantization axis, which in our case is determined by an external magnetic field angled 45◦

between the x and y lattice directions. We next apply a π/2 microwave pulse to rotationally

excite half of the molecules to |N = 1,mN = −1〉. We consider |0, 0〉 and |1,−1〉 as |↓〉 and |↑〉

components of a pseudo-spin 1/2 system. We choose the lattice polarizations so that the tensor

AC polarizabilities of |0, 0〉 and |1,−1〉 are similar [178]. However, a residual differential AC Stark

shift introduces single-particle dephasing that results in a spin-coherence time for the entire sample

of ∼1 ms. This dephasing allows us to prepare an incoherent 50:50 spin mixture of |↓〉 and |↑〉 by

holding the molecules in the deep lattice for 50 ms. Losses are then initiated by quickly ramping

down the lattice depth in the y direction (within 1 ms) to allow tunneling. We measure the number

of remaining molecules |↓〉, i.e., N↓(t), as a function of the subsequent holding time in the lattice.

We experimentally determine the initial loss rate κ by fitting N↓(t) to the solution of a

two-body loss RE of the form

dN↓
dt

= − κ

N↓(0)
[N↓(t)]

2, (4.1)

with N↓(0) the initial number of |↓〉 molecules. A typical experimental fit is shown in Fig. 4.2(a).

To avoid the saturation of the losses that originates from the finite number of molecules per tube

(∼6 per tube on average), which cannot be captured by the RE, we fit only up to times when

∼ 25% of the molecules are lost.
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Figure 4.2: (a) Measured number loss of |↓〉 molecules for an axial (transverse) lattice depth of
Vy = 5ER (V⊥ = 25ER) (circles) and best fit using a rate equation (RE), Eq. (4.1) (black dashed
line). (b) Number loss rate, κ, as a function of Γ0 (fixing J ≈ 570 Hz and varying the bare on-site
rate via V⊥). (c) Number loss rate, κ, versus J for fixed Γ0 ≈ 87 kHz (varying Vy and adjusting
V⊥ accordingly). Vy (V⊥) was varied from 5 to 16ER (20 to 40ER). Black circles are experimental
measurements (error bars represent one standard error). Green short-dashed lines show solutions
of the RE Eq. (4.4) using an effective loss rate Γeff (single-band approximation). The blue long-
dashed line shows the multiband RE using Γ̃eff in Eq. (4.4). The multiband and single-band RE
results were obtained by fixing the filling fraction to be 6%, and 25% respectively. Panels (b) and
(c) directly manifest the continuous quantum Zeno effect: in (b) the measured loss rate κ decreases
with increasing on-site Γ0; in (c) a fit to the experimental data supports κ ∝ J2, with a χ2 (sum
of the squared fitting errors) several times smaller than for a linear fit.

The loss rate κ in general depends on the tunneling rate J/~ and the on-site “bare” loss rate

Γ0. If a single-band approximation is used, the on-site bare loss rate Γ0 is given by [82]

Γ0 = β(3D)
∫
|W (x)|4d3x, (4.2)

where W (x) is the lowest-band single-particle 3D Wannier orbital. The two-body loss rate coeffi-

cient for molecules in |0, 0〉 and |1,−1〉, β(3D), was measured to be β(3D) = 9.0(4)×10−10 cm3 s−1 [278].

To experimentally extract the dependence of κ on Γ0 and the single-particle hopping energy

J , we perform similar measurements to those reported in Ref. [278]. However, here we ensure

reproducibility of the initial conditions to fix f for all lattice conditions. To measure the Γ0-

dependence we set Vy = 5ER, which fixes J , and then tune Γ0 by modifying V⊥ [Fig. 4.2(b)]. Here,

ER = ~2π2/2ma2 is the recoil energy and m is the KRb mass. To study the J-dependence, we vary

Vy while simultaneously adjusting V⊥ to keep Γ0 fixed [Fig. 4.2(c)]. The loss rate κ is found to

depend quadratically on J for fixed Γ0 and to decrease with increasing Γ0 for fixed J . This scaling
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is consistent with the continuous quantum Zeno effect, as we now explain.

4.2 Theoretical description

4.2.1 Single-band rate equation

A simple way to understand the loss suppression is to consider two opposite spin particles in

a double well, |↑, ↓〉. Left and right sides in this notation represent left and right wells [Fig. 4.1(b)].

When two molecules occupy the same site the singlet component decays with rate Γ0, while the

decay of the triplet component is suppressed by the centrifugal barrier in odd partial-wave chan-

nels [59]. Consequently, the loss rate is determined by Js =
√

2J , which is the tunneling computed

after projecting the initial wavefunction into the singlet state |s〉 = (|↑, ↓〉 − |↓, ↑〉)/
√

2.

When ~Γ0 � Js, second-order perturbation theory can be applied and gives a net |↓〉 loss

rate of 4Γeff with Γeff = 2(J/~)2

Γ0
. This loss rate can be connected to number loss dynamics with a

RE,
dnj↓
dt = −4qΓeffnj+1↑nj↓, where nj↓ is the number of |↓〉 molecules at site j and q is the number

of nearest neighbor lattice sites (q = 2 for tunneling along the tube direction) [16]. Assuming a

uniform distribution, the 50:50 mixture implies nj+1↑ = nj↓ = n↓ and

dn↓
dt

= −8Γeff [n↓(t)]
2 or (4.3)

dN↓
dt

= − κSB
N↓(0)

[N↓(t)]
2, (4.4)

where κSB = 8Γeffn↓(0). All parameters are known except the filling fraction f = 2n↓(0). The RE

assumes that the loss rate depends only on the average density. This assumption is valid when

the redistribution of density after a loss process occurs faster than the typical time between losses

(J � Γeff) 1 .

This simplified single-band model qualitatively reproduces the measured dependence of κ on

lattice parameters [green-short-dashed line in Figs. 4.2(b)-(c)]. However, since Γ0 is larger than the

band gap (e.g., 4 times larger for a Vy = 5 ER and V⊥ = 40 ER lattice), this single-band theory is

1 Note: Although a transition dipole matrix element exists between |↑〉 and |↓〉, we neglect dipolar interactions
because of the lack of spin coherence in our 50:50 mixture



39

known to be inadequate. Moreover, in order to fit the experiment, the single-band theory requires

f ≈ 25%, which is known to be inconsistent with estimates of the filling f . 10% from Ramsey

spectroscopy procedures [100, 49]. Resolution of this discrepancy requires including multiple single-

particle bands, which are admixed by strong two-body losses.

4.2.2 Multiband rate equation

A single-band model overestimates Γ0, predicting it to be larger than the band gap. Incorpo-

rating higher bands decreases Γ0 and hence decreases the f estimated from experiment (since the

effective loss rate is inversely proportional to Γ0). We extract a renormalized effective loss rate by

numerically computing the loss of two molecules trapped in a double well along y. We expand the

non-Hermitian Hamiltonian Ĥ = Ĥ0 − i~β(3D)δreg (r) /2, where δreg (r) = δ (r) (∂/∂r) r is a regu-

larized pseudopotential [104] and Ĥ0 the single-particle Hamiltonian, in the 3D Wannier function

basis. This model accounts for interaction-mediated band excitations in all three dimensions. We

initialize the system with two molecules in the singlet |s〉 and infer the effective loss rate by fitting

the norm decay to exp(−4Γ̃efft). Convergence is achieved with 6 bands in each dimension.

Surprisingly, as shown in Figs. 4.2(b–c), both effective loss rates Γeff and Γ̃eff scale similarly

with Γ0 and J . This similarity explains why qualitative experimental signatures of Zeno suppression

expected from a single-band model survive even though such a model is invalid. However, the

multiband Γ̃eff is ∼5 times larger than Γeff . Once these effective loss rates are calculated, the only

free parameter to fit the experimental measurements is the filling f , which was fixed to be the same

for all data shown in Figs. 4.2(b–c). The ∼ 5 times faster loss rate from the multiband model leads

to a ∼ 5 times smaller filling fraction of f = 6% [Figs. 4.2(b–c), blue-long-dashed line] compared to

the grossly overestimated 25% extracted using Γeff [Figs. 4.2(b–c) green-short-dashed lines]. The

inadequacy of the single-band model to extract the correct filling fraction, and the success of the

multiband model, are key results of this work.
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4.2.3 Mean-field and DMRG

The RE, with parameters extracted from the multiband model, describes the experimental

observations fairly well at intermediate V⊥, but deviates from them for the largest V⊥. We attribute

these deviations to the suppression of tunneling at the cloud’s edges due to the energy mismatch

between adjacent sites in the harmonic potential generated by the lattice beams. By inhibiting

transport, this effect invalidates the assumption that molecules are redistributed rapidly between

loss events, and therefore the losses are not determined exclusively by the average density but

depend on the detailed dynamical redistribution of molecules.

Although this redistribution is absent from the RE, it can be accounted for by solving a master

equation with a density matrix, ρ̂, projected into the states with at most one molecule per site

after adiabatic elimination of doubly occupied states. We keep terms up to order Γeff [82], and we

simultaneously account for multiband effects by replacing the single-band Γeff by the renormalized

loss rate extracted from the multiband double well solution, obtaining

d

dt
ρ̂ = − i

~
[Ĥ0, ρ̂] + Lρ̂. (4.5)

Here Ĥ0 = −J∑j,σ(ĉ†jσ ĉj+1σ + h.c) +
∑

j,σ V
σ
j ĉ
†
jσ ĉjσ, Lρ̂ = 1

2

∑
j

[
2Âj ρ̂Â

†
j − ρ̂Â

†
jÂj − Â

†
jÂj ρ̂

]
2

, and V σ
j = 1

2mω
2
σj

2a2 is the parabolic trapping potential felt by molecules in state σ at site j.

The average trap frequency (ω↑ + ω↓)/2 varies between ≈ 2π × (15 − 40) Hz for the experimental

range of V⊥. The σ-dependence is due to residual differential AC Stark shifts between the two

rotational states. L is a Lindblad superoperator that accounts for losses, and the jump operators

are Âj =
√

2Γ̃eff

[
(ĉj↑ĉj+1↓ + ĉj↑ĉj−1↓)− (ĉj↓ĉj+1↑ + ĉj↓ĉj−1↑)

]
. We have checked the validity of the

renormalized single-band model by confirming that it reproduces the dynamics of the multiband

problem for the case of two molecules in four wells.

To solve Eq. (B.1) we map the hardcore fermions onto hardcore spin-1/2 bosons [255], and

then use a mean-field ansatz ρ̂ =
∏
j ρ̃j with ρ̃j ≡

∑
α,β={↑,↓,0} ρ

α,β
j |α〉〈β|. Here, ρ̃j is the reduced

projected density matrix at site j, and ↑, ↓, 0 label the three possible local states of spin up, down,

2 Note: The sums run over all lattice sites, operators acting outside the bounds are implicitly ignored.
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and the vacuum, respectively. This ansatz leads to closed equations of motion for ρα,βj [see Appendix

B]. Due to the rapid dephasing of spin coherence resulting from ω↑ 6= ω↓, we set ρσ,σ
′ 6=σ

j = 0, which

simplifies the equations further. Although the MF treatment predicts no coherent tunneling for a

pure Fock state, we initiate it by assuming non-zero particle/hole coherence |ρσ,0j | = 1/2.

Fig. 4.3(a) shows the dynamics for the largest V⊥, where the coherent tunneling is strongly

suppressed by the large parabolic potential ω↑/↓. We see that the dynamics is poorly described

by the RE, and the MF solution better describes the data. Admittedly, the MF assumption is an

extreme approximation precluding entanglement between parts of the system. In order to test its

validity, we also solve Eq. (B.1) numerically by combining t-DMRG algorithms [259, 55, 266] with a

stochastic sampling over quantum trajectories [39, 172, 72, 220]. The results, shown in Fig. 4.3(b),

are converged in the matrix product state dimension χMPS and are therefore numerically exact. The

differential stark shift for the lattice parameters of Fig. 4.3 (ω↑/ω↓ ∼ 0.9) gives rise to an effective

spatially dependent magnetic field that disrupts spin correlations generated during the dynamics.

In this case the data, t-DMRG, and MF (which explicitly ignores spin-correlations) agree up to the

times used to extract loss rates from the data, when the contrast has decayed by ∼ 20%. However,

in the absence of a differential Stark shift (ω↓ = ω↑), we note that the density calculated from

t-DMRG saturates at a higher value than predicted by the MF theory, which we attribute to the

growth of spin correlations in the absence of dephasing [77].

4.3 Comparison with experiment measurement

4.3.1 Mean-field vs. experiment

With the validity of the MF established, we use it to model the experiment. In the MF

calculation, we assume that molecules are initially uniformly distributed within a shell with inner

(outer) radius of 20 (50) lattice sites. The shell distribution is expected because molecules are

created from a Mott insulator of Rb and a band insulator of K. Assuming only sites with one Rb

and one K can yield molecules during STIRAP [188, 49], sites in the trap center initially doubly
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Figure 4.3: Comparison of experimental loss dynamics for the deepest considered lattice to MF
and t-DMRG calculations. (a) Molecule loss vs. time for V⊥ = 80ER and Vy = 5ER [Identical
conventions/conditions to Fig. 4.2(b)]. The MF matches the experimental data better than the
RE (experimental fit). (b) Comparison of t-DMRG simulations (χMPS = 128, 2000 trajectories)
to MF, for two different cases: i) an identical trap for the two spin states with trap frequency
ω↓ = ω↑ = 2π×38 Hz; and ii) slightly different trap frequencies ω↓ = 2π×38 Hz, ω↑ = 2π×34.2 Hz.
Shaded areas indicate the standard error of the mean.

occupied by Rb atoms are lost [188]. We then average over random initial configurations, since

the experiments measure an ensemble of 1D tubes. Figures 4.4(a-b) show the MF results (red

line), where we used f = 9% to match the experiment. This is slightly larger than that from the

multiband RE (dashed blue line in Figures 4.4), f = 6%, since the RE overestimates the loss rate

by assuming instantaneous redistribution of the molecules.

Since the molecule distribution in the experiment is known only approximately, we vary the

shell width and find that the estimated MF filling fraction that best fits the experimental loss has

a range f ∼ 9±2%. The MF accounts better for the dependence of the loss rate on V⊥. Remaining

deviations between MF and experiment are seen only for the shallowest V⊥, where the transverse

tunneling rate is only three times smaller than the axial one, which may indicate the breakdown of

1D dynamics.

4.4 Conclusion

The understanding of the underlying physical mechanism responsible for the loss suppression

in KRb opens the path for laboratory explorations of iconic models of quantum magnetism com-
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Figure 4.4: (a) Number loss rate, κ, as a function of Γ0 (same data as Fig. 2(b)). (b) Number loss
rate, κ, versus J for fixed Γ0 (same data as Fig. 2(c)). Black circles are experimental measurements.
Blue long-dashed and solid red lines show RE and MF solutions, respectively, using Γ̃eff (multiband
model). The shaded area accounts for ±2% variations around the MF estimate of f ∼ 9% arising
from the uncertainty in the initial molecule distribution.

bining motional and spin degrees of freedom, previously believed to be inaccessible due to losses.

These include the extended t-J model, predicted to exhibit itinerant ferromagnetism, d-wave su-

perfluidity [90, 129], and topological phases [136, 13]. Our findings also extend to other dissipative

systems, such as alkaline earth atoms [152, 23, 252, 149] and other chemically reactive molecular

species [285].



Chapter 5

Synchronization of Interacting Quantum Dipoles

5.1 Introduction

Arrays of synchronized oscillators [197] are ubiquitous in biological [277, 236], physical [52]

and engineering [210] systems and are a resource for technological advances [145]. Although

there has been significant progress in the study of synchronization in classical systems [8], the

understanding of the same phenomena in the quantum realm remains limited. A major obstacle

so far is the general problem of the exponential scaling of the Hilbert space with system size which

makes calculations dealing with quantum arrays very challenging. In fact, current investigations

have been limited to the exact treatment of arrays of a small number of coupled quantum oscillators

[262, 226, 283, 163, 85, 84, 199, 3, 106, 261, 159], and large ensembles at the mean field level or

by including quantum corrections perturbatively [154, 140, 141]. Highly symmetric situations with

collective coupling mediated, for example, by a cavity mode [9, 273, 160], have also been studied.

Ensembles of radiating dipoles are a natural platform to study quantum synchronization,

where coherence can be generated from an incoherent source. One might regard laser systems,

where radiation is amplified by the stimulated emission of photons, as a prototypical example.

However, lasing is fundamentally a distinct phenomenon from quantum synchronization. This can

be seen from the fact that lasing is possible even in the absence of coupling between the atomic

dipoles, as is clear in the single atom laser [164], or in atomic beam lasers where only one atom is

present in the cavity at any given time. A more relevant situation is the quantum synchronization

that takes place in the context of superradiance [94, 158]. It has recently been understood that,
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in contrast to lasers, steady-state superradiance can produce spectrally pure light [94, 158, 29,

166, 96, 272, 241, 97] without stimulated emission. So far this has been demonstrated using a

cavity mode as a communication channel that spatially selects an optical mode and enhances the

coupling (through the cavity finesse). A more generic and relevant scenario, with great potential and

applicability, is the emergence of spontaneous macroscopic quantum synchronization in radiating

dipole arrays without a cavity but naturally coupled by the intrinsic anisotropic and long-range

dipolar interactions. This is the situation considered in this chapter.

Here we demonstrate that in the presence of an incoherent repumping source, dipole induced

cooperative emission can dominate over spatial inhomogeneities and quantum fluctuations and lead

to a resilient steady-state that exhibits macroscopic quantum phase coherence and intrinsic quan-

tum correlations. An iconic example of a macroscopic coherent state is a Bose-Einstein condensate,

achieved in ultra-cold gases at thermal equilibrium. In our case, however, the macroscopic order is

reached in the steady-state of an interacting and driven-dissipative system. Moreover, the cooper-

ative behavior can be detected by measuring the spectral purity of the emitted radiation. We note

that in clear distinction to previous studies [106, 154, 262, 3, 261, 141], our proposal does not rely

on an external coherent source or externally generated nonlinearities to seed the collective phase.

In our model synchronization emerges as a spontaneously broken symmetry driven by incoherent

processes in naturally coupled dipole arrays. As we show, and somewhat counterintuitively, an

incoherent drive is sufficient to generate phase coherence in these systems.

Specifically, the systems we consider are dense arrays of frozen quantum dipoles modeled

as quantized two-level systems. By dense arrays of frozen dipoles we mean arrays separated by

a distance much closer than the wavelength of the emitted photons and with motional degrees of

freedom evolving at a much slower rate than their internal dynamics (Fig. 5.1). These conditions

can be readily satisfied in a variety of quantum systems found in atomic, molecular and optical

physics (e.g., Rydberg gases [257, 1, 5], alkali vapors [122], alkaline-earth atoms [187], and polar

molecules [278]), chemistry (e.g., J-aggregates of dye molecules [28, 192, 234]), and biology (e.g.,

light-harvesting complexes [193, 222]). In cold vapors, one possible way to freeze the motion and
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tightly trap the particles is via an optical lattice potential (Fig. 5.1). In this case a sub-optical-

wavelength transition must be used in order to reach the tight-packing regime [278, 187].

Figure 5.1: Arrays of quantum dipoles spontaneously emit and absorb photons at rate Γ. The
photons mediate dipolar interactions between dipoles separated by a distance rab with both dissi-
pative, f(rab), and elastic, g(rab), components. A repumping source at a rate W provides energy
to maintain the oscillations and can be implemented using additional internal states that are not
shown. A possible implementation can be realized with cold atoms in an optical lattice.

To fully understand synchronization in the complex dipolar system, we analyze each of the

ingredients that compete and affect synchronization in a step-by-step procedure: the interplay

between repumping and collective emission, inhomogeneity in the coupling constants, quantum

correlations, and the competition between elastic and inelastic interactions. This chapter is orga-

nized as follows: In Sec. 5.2 we introduce the system in consideration and the master equation we

use to describe the dynamics. In Sec. 5.3 we first provide a simple mean-field description and discuss

connections to the classical Kuramoto model—the iconic model used to describe synchronization

in non-linear coupled oscillators. In Sec. 5.4 we discuss the phase diagram for the quantum system

assuming collective (all-to-all) coupling in the absence of inhomogeneity and elastic interactions,

and compare it with the mean-field solution. For this exactly solvable case we are able to explicitly

quantify the entanglement and correlations present in the steady state. In Sec. 5.6 we study how
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inhomogeneity in the inelastic couplings affects synchronization and focus on the case of power-law

decaying interactions. In Sec. 5.5 we study the emergence of quantum synchronization in radiating

dipoles taking the full long-range and anisotropic dipolar interactions into account. Specifically,

we consider a one dimensional geometry, where both the elastic and inelastic interactions can vary

significantly accross the dipoles and can be easily adjusted. In Sec. 5.7 we discuss experimental

implementations of our model, and in Sec. 5.8 we provide a conclusion and an outlook.

5.2 Dipole-dipole interaction and master equation

In this work we consider arrays of quantum dipoles with two accessible levels, which we

denote as |↓〉 and |↑〉. The interactions between two dipoles a and b, can be explicitly written as

g(rab) = −3Γ

2

{
sin2 θ

cos ζab
ζab

+(3 cos2 θ−1)[
cos ζab
(ζab)3

+
sin ζab
(ζab)2

]
}
,

f(rab) =
3Γ

2

{
sin2 θ

sin ζab
ζab

+(3 cos2 θ−1)[
sin ζab
(ζab)3

− cos ζab
(ζab)2

}
].

In the above, ζab = k0|rab|. Both g(rab) and f(rab) depend on the dipoles’ separation, |rab|, and the

angle θ between the mean dipole moment and the vector joining the dipoles. As noted in Chapter

2, when ζab � 1, the elastic g interactions with a strong angular variation are dominant except

close to the magic angle θm = arccos(1/
√

3), at which they are greatly suppressed 1 . In contrast,

f(rab) is almost isotropic in the near-field regime.

The spatially uniform behavior of f(rab) at short distance is what gives rise to cooperative

effects and superradiant emission [94]. Under generic conditions, however, superradiance is a tran-

sient effect that substantially limits the lifetime of dipole excitations. To compensate for the fast

decay here we add an incoherent repumping driving term at a rate W . This term is needed to gen-

erate a synchronized steady state where long-lasting coherence persists. An incoherent repumping

drive is commonly used in laser systems to maintain population inversion. It can be implemented

1 For generic cases, the pathological divergence of g(r) at r = 0 can be removed by introducing an additional term
into the expression of g(rab), − 4π

3k3
δ(rab) [175, 43]. This gives rise to the so called Lorentz-Lorentz shift [80]. For the

discrete arrays we consider in this work, there is always a cut-off distance and thus no divergence. For example, in
the suggested implementation using Sr atoms that is discussed in Sec. 5.7, the cut-off distance is determined by the
optical lattice spacing.
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by coherently driving, at a rate Ω, the |↓〉 state to an excited level that spontaneously decays,

at a rate γ � Ω, to the state |↑〉 [224]. Due to the fast depletion of the excited state, it can be

adiabatically eliminated and thus the net process is just an incoherent transfer of population from

|↓〉 to |↑〉 at a rate W = Ω2/γ.

The evolution of N dipoles is modeled by a quantum master equation for the reduced density

matrix ρ̂ of the dipoles [94]:

dρ̂

dt
= − i

~
[Ĥ0, ρ̂] + Lf [ρ̂] + LW [ρ̂], (5.1)

Ĥ0 =
~
2

N∑
a=1

[
δaσ̂

z
a +

N∑
b=1,b 6=a

g(rab)σ̂
+
a σ̂
−
b

]
, (5.2)

Lf [ρ̂] =
1

2

∑
a,b

f(rab)(2σ̂
−
b ρ̂σ̂

+
a − σ̂+

a σ̂
−
b ρ̂− ρ̂σ̂+

a σ̂
−
b ), (5.3)

LW [ρ̂] =
W

2

∑
a

(2σ̂+
a ρ̂σ̂

−
a − σ̂−a σ̂+

a ρ̂− ρ̂σ̂−a σ̂+
a ). (5.4)

The Hamiltonian Ĥ0 generates the coherent evolution of the dipole array where σ̂
(+,−,z)
a are the

Pauli spin operators for dipole a, δa denotes its oscillation frequency in the rotating frame defined

by the mean frequency of the dipole ensemble, and ~ is the reduced Planck constant. The Lind-

blad operator functionals, Lf,W , describe the inelastic photon emission and incoherent repumping

processes, respectively.

5.3 Mean-field treatment and connection to the Kuramoto model

To obtain a qualitative picture of how synchronization can happen among the dipoles, we first

perform a mean-field treatment and show the close connection between our quantum model and

the prototype models for classical synchronization. The mean-field approach assumes uncorrelated

dipoles, i.e., ρ̂ =
⊗

a ρ̂a, where each ρ̂a =
∑

σ,σ′=↑,↓ ρ
σ,σ′
a |σ〉〈σ′| is a 2× 2 matrix in the pseudospin

1/2 basis {|↑〉, |↓〉}. The components of the single-dipole density matrix, ρ̂a, can be visualized as

a Bloch vector {S⊥a (t) cosφa(t), S
⊥
a (t) sinφa(t), S

z
a(t)} = (1/2){ρ↑↓a + ρ↓↑a ,−i(ρ↑↓a − ρ↓↑a ), ρ↑↑a − ρ↓↓a }

(Fig. 5.2). The mean-field solution yields a system of coupled nonlinear differential equations for

ρσ,σ
′

a . For each a = 1, 2, . . . , N the parameters evolve as
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Figure 5.2: (a) Mean-field phase diagram calculated from the order parameter 0 ≤ Z ≤ 1/
√

8.
The insets show snapshots of the tips of the Bloch vectors (red points) for dipoles prepared with
random initial phases and then evolved to steady-state in both regimes. (b) Quantum phase
diagram calculated from 0 ≤ ZQ ≤ 1/

√
8. (c) The time evolution of the conditional QFI exhibits

entanglement (dashed line: single trajectory, solid line: mean value of a few trajectories). Panel
(d) shows the steady state QFI vs W/Γ after averaging over many trajectories. The solid line
corresponds to the conditional case, and indicates entanglement over the repumping range where
synchronization exists. Upon computing the ensemble average one recovers the reduced density
matrix which leads to a calculated QFI below the entanglement witness threshold (dashed line).
(c) and (d) are shown for feff = 15Γ. For all panels, δa = g(rab) = 0 and f(rab) = feff/N .

dSza(t)

dt
= −S⊥a (t)

∑
b6=a

S⊥b (t)
[
f(rab) cos[δφba]− g(rab) sin[δφba]

]
−Γ

[
1

2
+ Sza(t)

]
+W

[
1

2
− Sza(t)

]
, (5.5)

dS⊥a (t)

dt
= −Sza(t)

∑
b6=a

S⊥b (t)
[
g(rab) sin[δφba]− f(rab) cos[δφba]

]
− Γ +W

2
S⊥a (t), (5.6)

dφa
dt

= δa+
N∑

b=1,b 6=a
Sza
S⊥b
S⊥a

[
g(rab) cos[δφba] + f(rab) sin[δφba]

]
, (5.7)
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where δφba(t) = φb(t)− φa(t). The term proportional to f(rab) in Eq. (5.7) that contains the sine

function can be identified with a similar term in the Kuramoto model (KM) [130]:

dφa
dt

= δa +K
N∑
b=1

sin[δφba], (5.8)

where K, the coupling strength per oscillator, must be large enough and positive for synchroniza-

tion to occur. The term proportional to g(rab) that contains the cosine function appears in the

Sakaguchi-Kuramoto model [216]—a more general but similar synchronization model to the KM.

Compared to the basic KM, the situation here is more complex. This is due to the fact that in

Eq. (5.7) the coupling constants are nonuniform and effectively time-dependent, since S⊥a (t) and

Sza(t) are dynamic variables.

To investigate whether the mean-field model admits spontaneous synchronization we consider

first the simplified case where δa = 0 for all dipoles, impose g(rab) = 0 for all pairs, and assume

a constant collective decay rate Nf(rab) ≡ feff . We define a global order parameter Z as ZeiΦ =

1
N

∑
a S
⊥
a e

iφa and look for a solution in which Z is time-independent and synchronized oscillators

possess a collective frequency ω, and thus a macroscopic phase Φ = ωt. These conditions lead to

two equations for the order parameter Z and the collective frequency ω (see C.1):

ω = 0, (5.9)

Z =

√
feff(W − Γ)− (W + Γ)2

√
2feff

. (5.10)

The solution is shown in Fig. 5.2(a). The insets show the phase distribution in the steady-

state for an array of oscillators initially prepared with a random distribution of phases for two

different values of the repump rate W . For a slow repumping rate (bottom inset), the system

remains unsynchronized. As the repumping rate is increased beyond a threshold value, the system

enters a synchronized state, as can be seen by the appearance of phase locking and the resulting

narrow phase spread (top inset). This can be explained by the fact that one necessary condition for

synchronization in the KM is K > 0, which translates to the requirement Sza > 0 on average in our

model and thus the need to have sufficiently large repump rate. In the limit feff � Γ (e.g., for large
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N), maximum synchronization is achieved at Wopt = feff/2, where the order parameter Z reaches

a maximum value Zmax ≈
√

1/8. For this optimal condition for synchronization the quantum

dipoles are ordered with the same phase and radiate with atomic inversion Sza ≈ 1/4. Note that

the maximum order parameter is smaller than 1/2 even when fully synchronized because of this

required finite value of the atomic inversion. One intriguing aspect is that repumping, which is the

process that builds up synchronization, is itself an incoherent process. It is crucial that repumping

does not preserve the norm of the collective Bloch vector, allowing it to extend or contract. For

large W > Wopt, Z decreases again reflecting a suppression of synchronization. In this limit the

dipoles are repumped so fast that they are all driven to the |↑〉 state (Sza → 1/2 and S⊥a → 0) and

phase coherence between them cannot build up.

The cases of a heterogeneous distribution of δa’s can be treated at the mean-field level in a

simple way. The results, summarized in the C.1, are qualitatively similar. In general, the inclusion

of a finite spread ∆ in δa decreases the value of the order parameter Z. For instance, if δa is sampled

from a Lorentzian distribution p(δa) = ∆/[π(∆2 + δ2
a)],

Z =

√
feffP −Q2 + 2∆2 − 2∆

√
∆2 + feffP√

2feff

, (5.11)

where Q = Γ + W and P = W − Γ. Optimal synchronization is obtained at a smaller repumping

rate, Wopt ≈ feff/2−∆/
√

2. We note that for given feff and W , synchronization is destroyed (that

is, Z = 0) at ∆c = (Q2 − feffP )/(2Q).

For the case with finite g(rab) 6= 0, Eq. (5.7) predicts dephasing caused by different g(rab) 6= 0,

and a global rotation that does not affect synchronization if all g(rab) are identical [see C.1].

However, the mean-field ansatz is not appropriate for treating the case where elastic interactions

are present since it neglects quantum entanglement between dipoles. The case with finite g(rab)

will be discussed in Sec. 5.6 by exactly solving the many-body problem.
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5.4 Quantum synchronization for the collective system

In the simplified case where δa = 0 for all dipoles, g(rab) = 0 for all pairs, and a constant

collective decay rate Nf(rab) ≡ feff , it is possible to exactly solve Eq. (5.1), i.e., the full quantum

dynamics, even for many particles, allowing us to benchmark the validity of the mean-field solution.

This is due to the invariance of the master equation under individual dipole permutations that

reduces the scaling of the Liouville space from exponential, 4N , to polynomial, of order N3 [275].

5.4.1 Phase Diagram

Quantum fluctuations can lead to phase diffusion and to decay of single particle coherences

in the steady-state (it is possible for 〈σ̂+
a 〉 → 0 even in a synchronized state), so Z cannot be

used as a measure of synchronization in a beyond mean-field treatment. However, phase locking

in quantum mechanics can be quantified by the degree of spin-spin correlations ZQ, defined by

Z2
Q ≡ 〈σ̂+

a σ̂
−
b 〉, where the bar indicates an average over all pairs of different dipoles a and b. For an

unsynchronized state ZQ is 0 and for a completely synchronized state ZQ is Zmax
Q = 1/

√
8 [166, 29].

The corresponding phase diagram, shown in Fig. 5.2(b), closely resembles the mean-field one.

To demonstrate that ZQ can be used to quantify the emergence of quantum synchronization,

regardless of the inherent non-equilibrium and dissipative character of our system, we have also

computed pairwise two-time correlation functions (see Appendix C.2). The decay rate of these

correlations encodes information about the spectral coherence of the emitted radiation. The range

of W/Γ values where the emitted light is maximally coherent agrees with the regime where the

system is optimally synchronized according to ZQ. Moreover, we have also confirmed the mod-

erate importance of higher order correlations in the synchronized steady-state by comparing the

exact solution with a cumulant expansion calculation (which includes lowest order corrections to

the mean-field result). We find the cumulant expansion agrees well with the exact solution (see

Appendix C.2). The only limit where there are important deviations is at very weak pumping

W � Γ where the system favors subradiant emission arising from strong atom-atom correlations
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[indicated by the purple region in Fig. 5.2(b)] [275].

5.4.2 Quantum correlations and entanglement

The robust macroscopic quantum coherence exhibited by the synchronized state leads to the

natural question of whether or not entanglement can be present in the steady-state even in this

dissipative environment. Most previous studies that attempted to address this question have been

limited to small systems [84, 141, 159, 160] and focused on the entanglement between a pair of

synchronized oscillators. Here, to determine the non-separability of the many-body steady-state,

we compute the average of the quantum Fisher information (QFI) and use it as an entanglement

witness [237, 107]. Any N particle state with (N2 + 2N)/3 ≥ F̄Q(ρ̂) > 2N/3 is entangled (non-

separable) and a quantum resource for phase estimation (see Appendix C.3 for details).

Due to dissipation, the density matrix of the system is reduced to a mixed state, as obtained

from Eq. (5.1), which describes the dynamics of the system after a statistical average over many

experimental trials. However, the evolution of the system for an individual experimental realization

can be quite different. We consider a Gedanken experiment in which one monitors the system

evolution and keeps a measurement record of the emitted photons. The evolution of the system

is then conditioned on the measurement record [40, 198]. This type of conditional evolution has

been widely studied in quantum optics and utilized together with quantum feedback control in

examples such as the optimal generation of spin squeezed states (See Refs. [251, 98]). It should

be emphasized that the conditional evolution based on the measurement record gives a quantum

trajectory that should not be regarded simply as a numerical tool to allow the efficient assembly

of ensemble averages. Each quantum trajectory is a potentially realizable physical outcome (even

if hard to perform in practice) as allowed by the quantum dynamics of the open quantum system

under consideration.

We calculate F̄Q(ρ̂c) (with the c in ρ̂c meaning conditional) for each conditional trajectory

and in Fig. 5.2(d) we show its average over a sufficiently large set of trajectories at steady state (see

Appendix C.3). For this conditional evolution we observe entanglement in a parameter regime that
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correlates with ZQ > 0 [see Fig. 5.2(c) and (d)]. On the other hand, if we discard the information

present in the measurement record, by using the ensemble averaged ρ obtained from directly solving

Eq. (5.1), and then computing FQ(ρ̂), the QFI falls below the entanglement witness threshold [see

Fig. 5.2(d)].

To differentiate quantum effects from classical ones, we further calculate the quantum discord

D [see Appendix C], which can be considered as a measure of quantum correlation more general than

entanglement and more robust in a dissipative environment [186, 54]. Separable states with nonzero

D are intrinsically nonclassical, since local measurements performed on a subsystem inevitably

disturb the whole system [186, 171]. We measure classical correlations of the steady state by the

difference between the mutual information I [see Appendix C] and D. We find the mixed steady-

state contains nonzero quantum correlations in the synchronized regime Fig. 5.3(a). Moreover we

observed that although both D and ZQ exhibit a similar dependence with pumping rate W , they

do not exactly peak at the same value [3].

(a) (b) 

Figure 5.3: Quantum correlations and total correlations. The total and quantum correlations
in the steady state are quantified by the mutual information 0 ≤ I ≤ 2 and quantum discord
0 ≤ D ≤ 2. (a) In the synchronized phase, there are nonzero quantum correlations and classical
correlations (I − D), and both show a dependence on W that qualitatively agree with ZQ. (b)
Even in the thermodynamic limit, quantum correlations remain a significant fraction of the total
correlations. For both panels, δa = g(rab) = 0 and f(rab) = feff/N .

Although the existence of a nonzero D has been reported to exist in several quantum syn-

chronization studies [159, 171], we want to emphasize that those have been always limited to small

systems. To our knowledge our calculations are the first to consider D in macroscopic samples. In
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Fig. 5.3(b) we show the dependence of D with system size. Our calculation shows that quantum

correlations remain a significant fraction of I even in the thermodynamic limit.

5.5 Synchronization with finite-range interactions

Up to this point we have only considered all-to-all interactions; now we consider the effect

of finite range interactions on synchronization. In the dipole array both f(rab) and g(rab) are

nontrivial functions of rab and contain terms decaying as a power-law with distance, ∝ 1/|rab|α

with α = 1, 2, 3. Instead of dealing with all these terms together, to gain insight on how spatial

inhomogeneities affect quantum synchronization, we first study a simpler case assuming a power-

law cooperative decay f(rab) ∝ |rab|−α, with the exponent α as a variable parameter and set both

g(rab) = 0 and δa = 0.

In the classical regime [53, 238, 50, 256], analytical calculations and numerical simulations

considering arrays of oscillators interacting via power law interactions on a one-dimensional lattice

had identified αc = 3/2 as the critical value of the power law exponent below which long-range phase

order is possible [50]. For α < αc, a transition to a state in which a finite fraction of the oscillators is

entrained takes place for a sufficiently strong but finite coupling strength in the large system limit.

Generalizations of these results to oscillators in D dimensions [50] have also identified three different

regimes for synchronization: perfect phase ordering for α ≤ D, entrainment with long-range phase

order for α < 3D/2 and a crossover to exponential decay of correlations at α = (3D + 1)/2.

Reference [256] has also suggested that in the regime α > D global synchronization is absent but

local synchronization persists for arbitrary weak coupling with a slowly decaying order parameter.

To quantify the effect of finite-range interactions on synchronization in the quantum regime

we compute spin-spin correlations within linear clusters that contain d dipoles, (ZdQ)2 ≡ 〈σ̂+
a σ̂
−
b 〉d,

using a cumulant expansion method as described in Appendix B. Here the bar followed by a

subscript d indicates an average over the pairs of different dipoles a and b contained in a linear

cluster of size d. The linear clusters start at the central spin as shown in Fig. 5.4. We have confirmed

that the cumulant expansion method reproduces well the correlation functions by performing direct
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comparisons with the exact solution (see Appendix B). Fig. 5.4(a) shows the behavior of ZdQ as

a function of cluster size d and power-law decay exponent α in arrays of dimension D = 1 and

2. Clear global synchronization with an order parameter ZdQ independent of d is observed for

α . D. For 0 < α . D/2, the local order parameter ZdQ is almost independent of α and d and

the system behaves almost like the all-to-all system. For D/2 . α . D synchronization remains

global and almost independent of d, but the order parameter slowly decreases with α. For α & D,

synchronization becomes local and correlations quickly decrease with cluster size. The magenta

contour provides an indicative scale of the boundary between global and local synchronization.

The white contour lines also provide information about the decrease of the order parameter with

increasing α and d. We observe that, as in the classical case, α ∼ D roughly marks the transition

between global and local synchronization, although a more quantitative comparison would require

far larger systems.

An alternative way to characterize domain formation and the fact that it can persist even

when there is a variation in the local detunings, δa 6= 0, is to examine pairwise two-time correlation

functions, Za,b(τ) ≡ limt→∞〈(σ̂+
a (t+ τ) + σ̂+

b (t+ τ))(σ̂−a (t) + σ̂−b (t))〉, which can be related to the

emission spectrum of the pair of atoms [40]. The oscillations in Za,b(τ) encode information about

the relative precession rate between different dipoles. By parameterizing Za,b(τ) as Za,b(τ) =

A cos(νabτ) exp(−γτ) we can extract the relative precession frequency νab between dipoles a and b,

where entrainment of dipoles a and b corresponds to νab = 0. To explore the entrainment of dipole

pairs in our system, we assign random detunings distributed uniformly in [−Γ/2,Γ/2] to a linear

chain of N = 200 dipoles and calculate νab for b = 1, 2, . . . , 100 with a = 101 corresponding to

the central dipole in the chain. Synchronization regimes similar to those shown in Fig. 5.4(a) are

observed for thisD = 1 system, which we illustrate in Fig. 5.4(b) by plotting a histogram (top panel)

and the distribution of frequencies ν (bottom panel) for three values of α. For global coupling,

α = 0 (dark blue symbols), all the dipoles become entrained with each other (ν = 0), indicating

complete synchronization; for α = 0.65 (red symbols) dipoles split into entrained (ν = 0) and

drifting (ν 6= 0) groups. While not all dipoles are entrained, the entrained dipoles are distributed
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along the whole array, and thus synchronization is still global; and for α = 2 (light blue symbols)

the majority of dipoles are not entrained. These observations of relative precession frequencies

between pairs of oscillators are consistent with the regimes obtained from the order parameter

plotted in Fig. 5.4(a).

Figure 5.4: (a) Spin-spin correlations, ZdQ, in linear clusters containing d dipoles at optimal

repumping W for power-law couplings f(rab) = Γ
4

(
a
rab

)α
with lattice spacing a. We set δa =

g(rab) = 0 and consider N = 900 dipoles arranged in both linear (D = 1) and square lattice (D = 2)
geometries. For α . D global synchronization is observed and the order parameter is independent
on cluster size d. For D . α the order parameter starts to clearly decay with increasing d. The
magenta line (ZdQ = 0.14) provides an indicative scale of the boundary between global and local
synchronization. The white contour lines provide an indication of the decrease of the synchronized
domains with increasing α. (b) Pair wise two-time correlation functions in the steady-state are
parametrized by Za,b(τ) = A cos(ντ) exp(−γτ) where a is chosen as the central dipole of a linear
chain of N = 200 dipoles. The dipoles are assigned random detunings δa distributed uniformly in
[−Γ/2,Γ/2]. The dark blue, red, and light blue symbols correspond to α = 0, 0.65 and 2 respectively.
The histogram of frequencies ν exhibits similar synchronization regimes than those seen in (a).

5.6 Synchronization of dipoles with elastic interactions

We now treat the full problem of radiating quantum dipoles incorporating elastic interactions

g(rab) and the intricate competition of spatially-dependent and anisotropic couplings [both g(rab)

and f(rab) have terms with power law dependence α = 1, 2, 3 on distance] (Fig. 2.1). We solve the

full master equation without any approximation [40] for systems of up to twenty dipoles in a chain

using the actual spatial dependence of both f(rab) and g(rab), and set δa = 0. We observe a robust
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synchronized state that exists in a wide parameter space. As long as feff ≡ Nf(rab) is large enough,

we find that synchronization takes place and is only weakly affected by substantial differences in

g(rab), e.g., variations in the dipole array that modify g(rab) by two orders of magnitude only

decrease the order parameter by a factor of two (Fig. 5.5) in the steady state. This is in striking

Figure 5.5: (a) Synchronization in dipole arrays is demonstrated for N = 12 dipoles on a line when
subjected to incoherent pumping (optimal rate). In this geometry, regardless of the strong angular
variation of g with the lattice spacing a (see contours) the order parameter, ZQ, (normalized
by Zmax

Q = 1/
√

8) exhibits a weak dependence on θ and a and reaches a maximum at θ = θm.
(b) The order parameter is computed for N = 16 dipoles on a line with θ = θm and feff =∑

a,b 6=a f(rab)/(N − 1) (symbols), and for a system with constant f(rab) = feff/N and g(rab) = 0
(dashed line)s. Similar dependence on W is found for these two different systems. Here the order
parameter for dipoles is always smaller in the presence of elastic interactions.

contrast to the situation in a system without dissipation, where the elastic interaction is known

to generate entanglement between spins and to cause a decay of the order parameter during time

evolution [157].

For the orientation θm = arccos(1/
√

3), the order parameter reaches a significant fraction

of Zmax
Q , indicating the emergence of macroscopic spontaneous synchronization of the radiating
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quantum dipole array (Fig. 5.5). To further emphasize the relevant role played by the inelastic

term, in Fig. 5.5(b) we compare a solution of the master equation [Eq. (5.1)] for two cases: a

system of coupled dipoles arranged in a 1D chain and oriented at the magic angle (symbols) and an

array of identically coupled dipoles with the same feff but experiencing only inelastic interactions

[g(rab) = 0, dashed lines]. The calculated order parameters agree well for the two different cases.

The similar behavior demonstrates that in spite of the complex geometry of the dipolar interactions,

the capability of the dipole system to synchronize can be characterized to great extent by the

quantity feff .

5.7 Experimental implementation

Our calculations above demonstrate the potential for synchronization in a dense array of

dipoles. The flexible and precise control exhibited by ultracold atomic systems make them ideal

platforms to experimentally investigate the synchronization phenomenon predicted here. Atomic

systems operate with a large number of quantum oscillators and also allow for the tunability of the

interaction parameters over a broad range.

One possible set-up to observe synchronization consists of arrays of ultracold 87Sr atoms

prepared in two electronic internal states that form the two-level system. The | ↓〉 could then

correspond to the long-lived 5s5p 3P0 state, with an intercombination line narrower than 10−3 s−1

. This is the state used to operate the most precise atomic clocks [27]. The |↑〉 could correspond

to the 5s4d 3D1 state with a natural linewith Γ = 290 × 103 s−1. Both states can be trapped in

an optical lattice at the magic wavelength a = 0.2 µm [187], that generates the same trapping

potential for both states minimizing Stark shifts and inhomogeneities in the coupling constants.

The dipole-dipole interactions are mediated by photons at the wavelength λ = 2.6 µm and thus,

as shown in Fig. 5.5, the ratio a/λ < 0.08 falls in the parameter regime where dipoles can be

synchronized.

By changing the angle between the laser beams used to form the lattice potential, the lattice

spacing can be varied allowing tunability of the interaction strength between dipoles. The incoher-
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ent pumping can be realized by coherently transferring the 5s5p 3P0 population to one or several

appropriate intermediate states that decay rapidly to the 5s4d 3D1 state [167]. An example would

be the 4d5p 3P1 state [217].

The polarization of the dipoles can be oriented in an arbitrary direction by an electromagnetic

field. Although all the dipoles cannot be oriented at the magic angle in a 3D geometry, one may still

suppress the elastic interactions by dynamical decoupling techniques adopted from NMR [71]. Those

have been already demonstrated in ultracold polar molecule systems [278]. Another possibility is

to use a spatial configuration of external fields that induces an ‘averaging out’ of the dominant

elastic interactions [184]. Moreover, by slightly departing from the magic-wavelength condition,

the dipoles can be subjected to onsite inhomogeneities that generate different detunings δa.

The phase synchronization can be probed by measuring ZQ, which experimentally can be

directly obtained from the fluorescence intensity. As suggested in Sec. 5.5, phase locking can also

be extracted from two-point correlations which can be determined by analyzing the fluorescence

spectrum [167].

An intriguing but also more speculative and less controllable realization of our quantum

dipole model is the case of fluorescent organic molecules. A possible two-level configuration in

those systems consists of a vibrational level of the ground electronic potential chosen as |↓〉 and the

lowest vibronic level of the first excited potential chosen as |↑〉. Incoherent pumping can be realized

by driving an optical transition to a higher excited vibronic level |φ〉 in the first excited potential,

which decays on picosecond timescales to the state |↑〉 via non-radiative transitions [127]. Typical

values of the fluorescence wavelength λf and lifetime τf for organic chromophores under a variety

of environmental conditions put these systems in a regime of near optimal synchronization. For

instance, pseudoisocyanine chloride (PIC) and merocyanine derivatives commonly used in organic

light-emitting diodes (LED) [68, 17, 120, 6] typically form low-dimensional molecular aggregates in

liquid solution with a ≈ 0.5− 2.0 Å, and ratios a/λf on the order of 10−3. The typical fluoresence

decay rate for these organic chromophores is Γ ∼ 0.1− 1 GHz [127]. In order to achieve W/Γ = 1

and enter the synchronized phase, the required pumping laser intensity is IW ∼ 1 − 10 kW/cm2,
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which is lower than the theoretical lasing threshold intensities Ith ∼ 0.1− 1 MW/cm2 of dye lasers

[127]. Therefore, it should be feasible to achieve steady state synchronization of organic dipoles via

incoherent optical driving.

5.8 Conclusion

We have demonstrated that a system of radiating quantum dipoles can be synchronized in

the presence of repumping. Our analytic mean-field approach provides a direct analogy between

synchronization of quantum dipoles and synchronization of classical phase oscillators. Using exact

solutions of the master equation and a cumulant expansion approach, we determined the necessary

conditions for synchronization, and the entanglement properties in the steady state of macroscopic

ensembles under different measurement protocols. We also analyzed the effect of finite-range inter-

actions in large arrays. To our knowledge those have been previously explored only in the classical

regime. These calculations, although restricted to g(rab) = 0, emphasize how the interplay between

incoherent repumping and cooperative dipole decay can give rise to robust quantum synchroniza-

tion. For treating the general case of dense packed dipoles, we numerically solved the master

equation exactly for up to twenty dipoles, and studied the effect of elastic interactions. The one

dimensional geometry chosen allows us to tune the dipolar interactions accross a wide range of

parameters by simply adjusting the spacing and polarization angle, and investigate the competing

roles of the elastic and inelastic interactions. One dimensional systems are amenable for theoret-

ical investigation since they help us to minimize finite size effects. They can be implemented in

current experiments using ultra-cold gases and are relevant for the suggested implementation using

organic molecules. There are several organic species such as PIC molecules [17] that are known to

form quasi-one dimensional arrays both as single crystals and in liquid solution. These systems are

typically modelled as 1D arrays of two-level dipoles with energetic disorder to match spectroscopic

data [75]. For this configuration, we found synchronization in the presence of a large variation of

elastic interactions. We expect that in more general geometries, similar degree of synchronization

could be achieved provided the collective dissipative coupling feff dominates over the elastic pair-
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wise couplings, g(rab). These conditions might be easier to be satisfied in higher dimensional dense

packed dipolar arrays given the anisotropic character of the elastic terms which fluctuate both in

sign and magnitude across the array. In higher dimensions, geometric effect becomes more impor-

tant. Nevertheless, whether or not spontaneous synchronization in dipole arrays can be observed

under more generic high dimensional geometries remains an open question.

Our results show that the intrinsic macroscopic coherence of the superradiant steady state is

inherently resilient to single particle decoherence, spatial inhomogeneities, and noisy environmen-

tal effects. This observation could have relevant application to the development of low-threshold

organic lasers, highly efficient solar cells, materials with enhanced chemical reactivity, as well as

ultra-precise quantum devices, where these effects are anticipated to play an important role. More-

over, since quantum synchronization is imprinted in the spectral purity of the emitted radiation

[166], the generated light may potentially serve as a direct diagnostic tool of quantum coherences

in generic systems beyond cold gases such as organic molecules.



Chapter 6

Light scattering from dense cold atomic media

6.1 Introduction

Light-matter interactions are fundamental for the control and manipulation of quantum sys-

tems. Thoroughly understanding them can lead to significant advancements in quantum technolo-

gies, quantum simulations, quantum information processing and precision measurements [124, 51,

62, 69, 24, 118, 25]. Over the past decades, cold atom experiments have provided a clean and

tunable platform for studying light-matter interactions in microscopic systems where rich quantum

effects emerge, such as superradiance and subradiance, electromagnetically induced transparency,

and non-classical states of light [30, 95, 214, 191, 34]. However, in spite of intensive theoretical

and experimental efforts over the years, long-standing open questions still remain regarding the

propagation of light through a coherent medium, especially when it consists of large and dense en-

sembles of scatterers [110, 142, 213, 113, 223, 242, 22, 122, 232, 112, 231, 185, 115, 111, 114, 7, 31].

In fact, by studying small systems where analytical solutions are obtainable, it has been realized

that atom-atom interactions can significantly modify the spectral characteristics of the emitted

light. These effects yet need to be understood in large systems [187, 158, 281, 284, 19] where finite

size effects and boundary conditions become irrelevant. The situation is even more complicated

when the coupling with atomic motion is non-negligible [18, 144]. It is timely to develop theories

capable of addressing these questions, given the rapid developments on cold atom experiments and

nanophotonic systems. The experiments are entering strongly coupled regimes, where atom-atom

and atom-photon interactions need to be treated simultaneously and sometimes fully microscopi-
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cally [187, 116, 88].

A widely adopted approach to describe light scattering consists of integrating out the atomic

degrees of freedom and treating the atoms just as random scatterers with prescribed polarizability

[63, 258, 134, 36]. While this approach can successfully capture some classical properties of the

scattered light, it does not fully treat the roles of atom-atom interactions and atomic motion [131,

133, 227, 132]. An alternative route consists of tracing over the photonic degrees of freedom. In this

case the virtual exchange of photons induces dispersive and dissipative dipole-dipole interactions

between atoms, which can be accounted for by a master equation formulation [110, 142]. This

approach has been used to study systems of tightly localized atoms where the dynamics only takes

place in the atomic internal degrees of freedom. It has been shown to successfully capture quantum

effects in light scattering [242, 48, 280, 22, 21, 240]. However, due to the computational complexity,

it has been often restricted to weak excitation and small samples [169, 165, 281, 284], and a direct

comparison with experiments containing a large number of atoms has been accomplished only

recently [33, 212]. In general, most theories have not properly accounted for atomic motional

effects and atomic interactions on the same footing and many open questions in light scattering

processes remain.

Here, we present a unifying theoretical framework based on a coherent dipole (CD) model

(see Fig. 6.1(a)) to study the light scattering from cold atoms with possible residual motion. In

the low intensity and slow motion regime, we use the CD to investigate the collective effects in the

light scattered by a large cloud and show the interplay of optical depth (OD) and density. These

results are compared with the random walk (RW) model (see Fig. 6.1(a)) that only accounts for

incoherent scattering and thus ignores coherent dipolar interaction effects. To address the role of

atomic motion, we perform different levels of generalization of the CD model. With these modified

models, we show that atomic motion not only reduces phase coherence and collective effects, but also

impacts the line shape and line center of the spectral emission lines via photon recoils. Motivated

by a recent experiment at JILA (see Fig. 6.1(b)) [33], we focus our discussions on a J = 0→ J ′ = 1

transition, but the methods presented here can be extended to more complicated level structures
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without much difficulty.

(a) 

(b) 

✓
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⌦eik0x

detector 
�
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~✏in ~kin
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Figure 6.1: Scheme. (a) Microscopic models: random-walk model (left) and coherent dipole model
(right). In the random-walk model, a photon is randomly scattered by the atoms. Scattering events
are characterized by the incident and outgoing wavevector of the photons and their corresponding
polarization. In the coherent dipole model, atoms are coupled by dipole-dipole interactions (Gab)
and all atoms contribute to the fluorescence. (b) Experimental setup for measuring the fluorescence
from a cloud of atoms. An incident laser drives an atomic transition with a spontaneous emission
rate Γ. Atoms absorb and emit light. The detectors collect scattered photons at an angle θ
measured from the incident beam direction.

This chapter is organized as follows. In Sec. 6.2, we provide the mathematical description of

the CD model, which treats atoms as coupled, spatially fixed dipoles sharing a single excitation.

Its predictions on the collective properties of the emitted light such as the light polarization and

density dependence of the line shape and peak intensity are discussed. In Sec. 6.3, we introduce

the RW model and compare its predictions on the linewidth and peak intensity of the scattered

light to the ones obtained from the CD model. Those comparisons allow us to explore the role of

phase coherence in the atom-light interaction. In Sec. 6.4, we present extended models to study

motional effects on atomic emission. We first include motion in the CD model by assuming that

its leading contributions comes from Doppler shifts. Those are accounted for in the frozen model

approximation when we introduce local random detunings for atoms sampled from a Maxwell-

Boltzmann distribution. Then we go beyond the frozen model approximation and explicitly include
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atomic motion by means of a semi-classical approach. This treatment also allow us to go beyond the

low excitation regime. In Sec. 6.5, we apply the CD model to a recent experiment measuring the

fluorescence from an ensemble of 88Sr atoms. We finish in Sec. 6.6 with conclusions and outlook.

6.2 Coherent dipole model

6.2.1 Equations of motion for coherent dipoles

As derived in chapter 2, for an ensemble of N atoms with internal dipole transition J = 0→

J ′ = 1, the master equation is

i
dρ̂

dt
= −

∑
i,α

∆α[b̂α†i b̂
α
i , ρ̂] +

∑
i,α

Ωα[(eik0·ri b̂α†i + H.c.), ρ̂]

+
∑

i 6=j,α,α′
gαα

′
i,j [b̂α†i b̂

α′
j , ρ̂]

+
∑

i,j,α,α′

fαα
′

i,j (2b̂α
′
j ρ̂b̂

α†
i − {b̂

α†
i b̂

α′
j , ρ̂}),

(6.1)

where we have added the term describing the effect of an external driving laser with polarization

α, wavevector k0, and Rabi frequency Ωα. The Hamiltonian is written in the rotating frame of the

laser, with ∆α denoting the detuning between the laser and the transition |0〉 → |α〉. The dipole-

dipole interactions include both the far-field (1/r) and near-field (1/r2, 1/r3) contributions. The

terms described by fαα
′

i,j encapsulate collective dissipative process responsible for the superradiant

emission in a dense sample. The terms described by gαα
′

i,j account for elastic interactions between

atoms which can give rise to coherent dynamical evolution. These elastic interactions compete with

and can even destroy the superradiant emission [79, 284].

When the atoms’ thermal velocity v satisfies k0v � Γ, atoms can be assumed to be frozen

during the radiation process. Moreover, in the weak driving regime, Ω � Γ, to an excellent ap-

proximation, the master equation dynamics can be captured by the 3N linear equations describing

the atomic coherences bαj = 〈b̂αj 〉 of an excitation propagating through the ground state atomic
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medium. The corresponding steady state solution can be found from:

bαj =
Ωαδα,γe

ik0·rj/2
∆α + iΓ/2

+
∑
n6=j,α′

Gαα
′

jn

∆α + iΓ/2
bα
′
n , (6.2)

where we have specified the polarization of the driving laser to be along γ. For obtaining Eq. (6.2),

we have assumed there is only one excitation in the system, and ignored multi-atom coherences

(see Appendix D.1). This assumption is justified in the weak driving field regime [21, 234]. The

fluorescence intensity measured at the position rs in the far-field can be obtained by the summation

[110]

I(rs) ∝
∑
jn

e−iks·rjn
∑
α,α′

(δα,α′ − r̂αs r̂α
′
s )bα

′
j b

α∗
n , (6.3)

where bα∗n is the complex conjugate of bαn, and rjn = rj − rn.

6.2.2 Collective effects in fluorescence

For dilute samples the dipolar interactions are weak, G ≡∑i 6=j,α,α′ |Gαα
′

ij |/(NΓ)� 1, and Eq.

(6.2) can be solved perturbatively using G as an the expansion parameter, bαj = bα,0j +bα,1j +bα,2j +...,

(bα,nj ∝ Gn) which results in

bα,nj =
∑
l1 6=j
l2 6=l1

...ln 6=ln−1
α1,α2...αn

Gαα1
jl1

Gα1α2
l1l2

...G
αn−1αn
ln−1ln

Ωγδαn,γe
ik0·rln

in(∆α + iΓ
2 )(∆α1 + iΓ

2 )...(∆αn + iΓ
2 )
. (6.4)

In the expansion, terms of order n account for nth order scattering events. For simplicity, in the

following we assume the atomic sample has a spherical shape, with density distribution n(r) =

n0e
−r2/2R2

, unless otherwise specified. However, the conclusions can be generalized to other ge-

ometries. Here, n0 = N
2π
√

2πR3 is the peak density.

To the zeroth order, the atomic response is driven by the external field only and is not

modified by the scattered light:

bα,0j =
Ωαδα,γe

ik0·rj

∆α + iΓ/2
. (6.5)
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Substituting it into Eq. (6.3), the intensity of scattered light is

I ∝ N +N2e−|ks−k0|2R2
. (6.6)

There are two contributions to the intensity, the first term ∝ N represents the incoherent con-

tribution, and the second term ∝ N2 is the collective emission resulting from coherent scattering

processes[223, 33]. The phase coherence is restricted to a narrow angular region around the incident

laser direction, with δθ ∼ 1/k0R. The enhanced emission arises from the constructive interference

of the radiation from N dipoles [21]. Along other directions, the random distribution of atom posi-

tions randomizes the phases of the emitted light, smearing out the phase coherence after averaging

over the whole sample [33].

Including first order corrections, the intensity of the scattered light is given by

I(rs) ∝
NΩ2

(∆− Γ<[G])2 + (Γ + 2Γ=[G])2/4
, (6.7)

for transverse directions, where we have denoted Ω = Ωγ and ∆ = ∆γ , and

G =
∑
i 6=j

Gγγij e
−ik0·rij/(NΓ). (6.8)

For the forward direction, the intensity has the same form, except that the factor N is replaced by

N2, due to the phase coherence. Therefore, the line shape of the scattered light is Lorentzian, with

its line center frequency shifted by the elastic interactions [211, 211], and the linewidth broadened

by the radiative interactions. If we temporarily neglect the effect of polarization, when the atom-

atom separation is large, the dipole-dipole interaction is dominated by far-field terms, i.e., Gγγij ∼

−3Γ
4 (1 − r̂γij r̂

γ
ij)

eik0rij

k0rij
. In this limit analytical expressions for the linewidth broadening Γ, and

density shift, ∆, can be obtained: Γ = 2Γ=[G] = 3NΓ/(8k2
0R

2) = τ
4 Γ, with τ = 3N

2k2
0R

2 being the

OD of the sample, and ∆ = Γ<[G] = −Γn0k
−3
0 /4

√
2π. Therefore, while the collectively broadened

linewidth depends on the OD of the atomic cloud, the frequency shift depends on the density.

In a dense medium dipolar interactions are strong, G & 1, higher order scattering events

become important, and the interplay between the radiative interactions and elastic interactions

becomes non-negligible. As a consequence the above perturbative analysis is no longer applicable.
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In Fig. 6.2 and Fig. 6.3, we show the numerical solution of Eq. (6.2), which takes into account

all the scattering orders. As shown in Fig. 6.2(a), most of the scattered light is distributed
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Figure 6.2: CD model: on-resonance intensity. (a) Angular distribution: due to the constructive
interference along the forward direction (θ = 0), the intensity is drastically enhanced within a small
angular region. (b)-(c) The intensities for three different directions (θ = 0, π/10, π/2) are shown as a
function of atom number, each normalized to the value at N = 50. All are calculated for a spherical
cloud of fixed size. The right vertical axes label the intensity for θ = π/2, π/10. In (b) the OD
and the density are relatively low (when N = 500, τ=2,n0k

−3
0 =0.0015). The transverse intensity

increases ∼ N , while the forward intensity increases ∼ N2, showing a collective enhancement for
small window of θ around zero. Outside this narrow angular window the enhancement disappears
and the intensity becomes almost θ independent as indicated by the identical behavior observed
for two different angles, θ = π/10 and π/2. In (c) the OD and density are relatively large (when
N = 500, τ=10, n0k

−3
0 =0.017). The rate at which the intensity increases with N slows down in

both the forward and transverse direction: with I ∼ N1 for θ = 0 and I ∼ N0.5 for θ = π/2,
respectively. (d) On-resonance intensity as a function of OD: it is highly suppresed at large OD.
Here, the intensity is normalized to the corresponding value at τ = 25 for each direction.

within a narrow peak around the forward direction (laser direction). Outside this narrow region

fluorescence is almost uniformly distributed among other directions 1 . The forward emission is

1 Note: Around the θ = π direction there is a small enhancement ∼ 2 due to the coherent backward scattering
[134].
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Figure 2.3: CD Model: collective broadening. (a) FWHM linewidth as a function of OD. At small
OD, the FWHM increases linearly with OD, but as OD increases density e↵ects set in, multiple
scattering events become relevant and the linewidth dependence on OD is no longer linear. Two
di↵erent atom numbers are used for the blue (N=1000) and black lines (N=200), and the OD is
varied by changing the cloud size. For the blue line, n0k

�3
0 = 0.14 at ⌧=25, 0.003 at ⌧=2. For the

black line, the density at the same OD is doubled. With smaller density, the linewidth increases to a
larger value in the large OD regime. (b) The line shape at small OD values (⌧=2, n0k

�3
0 = 0.002) for

di↵erent angles ✓ (✓ is defined in Fig. 2.1(a)) is mainly Lorentzian. Here the intensity is normalized
to the on-resonance intensity for each ✓. (c) At large OD (⌧=20, n0k

�3
0 = 0.06), the fluorescence

line shape significantly broadens and stops being Lorentzian. The brown dots for ✓ = 0 show the
Lorentzian fit, which fails to describe the line shape. At intermediate ✓, a double-peak structure
shows up. For all panels, the cloud shape is spherical.
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Figure 2.3: CD Model: collective broadening. (a) FWHM linewidth as a function of OD. At small
OD, the FWHM increases linearly with OD, but as OD increases density e↵ects set in, multiple
scattering events become relevant and the linewidth dependence on OD is no longer linear. Two
di↵erent atom numbers are used for the blue (N=1000) and black lines (N=200), and the OD is
varied by changing the cloud size. For the blue line, n0k
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0 = 0.14 at ⌧=25, 0.003 at ⌧=2. For the

black line, the density at the same OD is doubled. With smaller density, the linewidth increases to a
larger value in the large OD regime. (b) The line shape at small OD values (⌧=2, n0k
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0 = 0.002) for

di↵erent angles ✓ (✓ is defined in Fig. 2.1(a)) is mainly Lorentzian. Here the intensity is normalized
to the on-resonance intensity for each ✓. (c) At large OD (⌧=20, n0k

�3
0 = 0.06), the fluorescence

line shape significantly broadens and stops being Lorentzian. The brown dots for ✓ = 0 show the
Lorentzian fit, which fails to describe the line shape. At intermediate ✓, a double-peak structure
shows up. For all panels, the cloud shape is spherical.
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OD, the FWHM increases linearly with OD, but as OD increases density e↵ects set in, multiple
scattering events become relevant and the linewidth dependence on OD is no longer linear. Two
di↵erent atom numbers are used for the blue (N=1000) and black lines (N=200), and the OD is
varied by changing the cloud size. For the blue line, n0k
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Figure 6.3: CD model: collective broadening. (a) FWHM linewidth as a function of OD. At small
OD, the FWHM increases linearly with OD, but as OD increases density effects set in, multiple
scattering events become relevant and the linewidth dependence on OD is no longer linear. Two
different atom numbers are used for the blue (N=1000) and black lines (N=200), and the OD is
varied by changing the cloud size. For the blue line, n0k

−3
0 = 0.14 at τ=25, 0.003 at τ=2. For the

black line, the density at the same OD is doubled. With smaller density, the linewidth increases to a
larger value in the large OD regime. (b) The line shape at small OD values (τ=2, n0k

−3
0 = 0.002) for

different angles θ (θ is defined in Fig. 6.1(a)) is mainly Lorentzian. Here the intensity is normalized
to the on-resonance intensity for each θ. (c) At large OD (τ=20, n0k

−3
0 = 0.06), the fluorescence

line shape significantly broadens and stops being Lorentzian. The brown dots for θ = 0 show the
Lorentzian fit, which fails to describe the line shape. At intermediate θ, a double-peak structure
shows up. For all panels, the cloud shape is spherical.

collectively enhanced. For low OD it increases as ∼ N2 (Fig. 6.2 (b)) while the transverse intensity

increases as ∼ N .

Dipolar interactions tend to suppress the rate at which the intensity grows withN (Fig. 6.2(c)).

This can be qualitatively understood from Eq. (6.7), which predicts that the intensity is reduced as

OD increases. Despite the fact that the perturbative analysis is only valid in the weak interaction

limit, this tendency remains and becomes more pronounced in the large OD regime as shown by

the numerical solution presented in Fig. 6.2(d). Broadly speaking, multiple scattering events tend

to suppress collective behavior [112, 135]. Similar physics is also observed in the behavior of the

linewidth. At small OD, the FWHM linewidth increases linearly with OD (Fig. 6.3(a)) and the

line shape is well described by a Lorentzian (Fig. 6.3(b)), as expected from Eq. (6.7). However,

when OD is large and the density is high, in addition to a significant broadening, the line shape

becomes non-Lorentzian (Fig. 6.3(c)) and the FWHM increases slowly with OD (Fig. 6.3(a)). To

further illustrate this, in Fig. 6.3(a) we plot the FWHM for the same OD but with smaller density

(by using a larger atom number). The figure shows that the linewidth indeed keeps increasing
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until saturation at a larger value of OD. Another interesting feature is the double-peak structure

observed only at intermediate angles θ, which arises from the interplay between the stimulated

photon emission driven by the probe field and the scattered photons emitted via dipolar exchage

processes (Fig. 6.3(c)).

The drastic modifications of the perturbative expectations from multiple scattering are also

present in the frequency shift of the scattered light. From a mean-field point of view, the linecenter

of scattered light is shifted according to the Lorentz-Lorenz shift πn0k
−3
0 Γ [80]. As shown by

the numerical calculation in Fig. 6.4 (blue line), at small density, the frequency shift is indeed

linear with n0k
−3
0 , but as density increases, the shift is quickly suppressed [112]. For atom density

∼ 5× 1013cm−3 (reached for example in cold 87Rb atom experiments [12]), the calculated density

shift is approximately a factor of two lower than the mean-field prediction.
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Figure 6.4: CD model: frequency shift. For small density, the shift calculated from the coherent
dipole model (blue line) increases linearly with density as predicted by the mean-field theory.
However, when density is large, there is a significant deviation from the mean-field result. When
motional effects are taken into account (red line, Doppler width = 5Γ, see Sec. 6.4.1), the non
linear suppression of the frequency shift with density is less severe.

The interplay between the imaginary and real part of the dipole-dipole interaction has to

be carefully accounted for to compare numerical simulations with experimental measurements by

doing finite size scaling. For typical computation resources the numerical solution of Eq. (6.2) is

limited to ∼ 104 atoms. On the other hand experiments usually operate with ensembles of tens of

millions of atoms. To theoretically model these large systems a proper rescaling in the cloud size is
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necessary. Equation (6.7) implies that in order to characterize the effect of radiative interactions

one should aim to match the experimental OD, which scales as ∼ N1/2. On the other hand, to

properly reproduce the effect of elastic interactions it is better to match the dimensionless number

n0k
−3
0 , which scales as N1/3. Therefore, there exist two different ways of rescaling the cloud size,

either by keeping the same OD or the same density. In Fig. 6.5 we show the effect of finite N for

a moderate range of atom numbers. Indeed, except from small deviations seen at very low atom
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Figure 2.5: CD Model: finite size scaling. (a) The linewidth is calculated for di↵erent number of
atoms at the same OD (⌧=4 for N=3000) by varying the density (blue line with circles). From
N = 1000 to 5000 the linewidth is not obviously changed. In contrast, by keeping the same density
(n0k

�3
0 = 0.0037 for N=3000) while varying the OD (magenta line with triangles), the linewidth

keeps changing. (b) The frequency shift is calculated for di↵erent number of atoms. By keeping
constant density (magenta line with triangles), the frequency shift remains almost constant, while
for constant OD (blue line with circles), there is a significant variation of the frequency shift with
N . Here the cloud aspect ratio is Rx : Ry : Rz = 2 : 2 : 1 [24].

15

○

○
○○ ○ ○ ○○ ○○○○○○○○○○ ○○ ○ ○ ○○ ○○ ○○○ ○ ○○ ○

△
△
△
△

△
△

△△ △△△△
△△△△△

△ △△ △ △ △△ △△ △△△ △ △△ △

� ���� ���� ���� ���� ����
���

���

���

���

�

��
��
�
��
��
/Γ

○ �� ����
△ ������� ����

○

○

○

○

○ ○ ○○ ○○○○○○○○○○ ○○ ○ ○ ○○ ○○ ○○○ ○ ○○ ○△△△△ △ △ △△ △△△△△△ △△△ △△ △ △ △△ △△ △△△ △ △△ △

� ���� ���� ���� ���� ����
-����

-����

-����

-����

����

�

��
��
��
��
�
��
���
/Γ

○ �� ����
△ ������� ����

(b)

(a)

Figure 2.5: CD Model: finite size scaling. (a) The linewidth is calculated for di↵erent number of
atoms at the same OD (⌧=4 for N=3000) by varying the density (blue line with circles). From
N = 1000 to 5000 the linewidth is not obviously changed. In contrast, by keeping the same density
(n0k

�3
0 = 0.0037 for N=3000) while varying the OD (magenta line with triangles), the linewidth

keeps changing. (b) The frequency shift is calculated for di↵erent number of atoms. By keeping
constant density (magenta line with triangles), the frequency shift remains almost constant, while
for constant OD (blue line with circles), there is a significant variation of the frequency shift with
N . Here the cloud aspect ratio is Rx : Ry : Rz = 2 : 2 : 1 [24].

Figure 6.5: CD model: finite size scaling. (a) The linewidth is calculated for different number of
atoms at the same OD (τ=4 for N=3000) by varying the density (blue line with circles). From
N = 1000 to 5000 the linewidth is not obviously changed. In contrast, by keeping the same density
(n0k

−3
0 = 0.0037 for N=3000) while varying the OD (magenta line with triangles), the linewidth

keeps changing. (b) The frequency shift is calculated for different number of atoms. By keeping
constant density (magenta line with triangles), the frequency shift remains almost constant, while
for constant OD (blue line with circles), there is a significant variation of the frequency shift with
N . Here the cloud aspect ratio is Rx : Ry : Rz = 2 : 2 : 1 [33].

number (< 1000), the linewidth broadening can be well captured by keeping the OD constant,

while the frequency shift is well described by using a constant density. In contrast, if a constant

OD is used to compute the frequency shift, the result would considerablly overestimate the shift,

e.g., by a factor of 10 when the N in numerical simulation is 1/100 the atom number in experiment.

The interplay of multiple scattering and density effects is more prominent for larger N values. To

deal with the OD vs density scaling issues in comparing with experiments the most appropriate

rescaling procedure that we found is the following: when computing the linewidth or peak intensity,

the theory is rescaled accordingly with the experimental OD. However, the actual OD value is not

exactly matched to the experimental one but to a slightly modified value, τ̃ = ητ to account for
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density effects [33]. For a moderate window of τ values, for example achieved experimentally by

letting the cloud expand for different times, η should be kept fixed. For the frequency shift the

theory should be rescaled according to density.

6.2.3 Anisotropic features of scattered light

For independent atoms radiation along the polarization of the driving laser is forbidden.

However, dipole-dipole interactions can generate polarization components different to the driven

ones if the atoms exhibit internal level structure, e.g., degenerate Zeeman levels in the excited

state. This is the case of a J = 0→ J ′ = 1 transition, where, as shown in Fig. 6.6, the fluorescence

emitted along the laser polarization direction (z-direction, θ = π/2 ) is nonzero. It is, however,

Figure 6.6: CD model: effect of laser polarization. (a) Intensity distribution in the plane perpen-
dicular to the laser propagation direction, i.e., θ = π/2 for all φ’s (inset). φ = 0 is the z-direction.
Here, the incident laser is polarized along z. The intensity detected along the laser polarization is
suppressed compared to other directions. (b) and (c) show the line shape and linewidth of light
detected at θ = π/2, φ = 0. (b) At small OD, the FWHM linewidth is below the natural linewidth.
(c) As OD increases, the linewidth is collectively broadened due to multiple scattering processes
(Fig. 6.3(a)). For all panels, degeneracy in excited levels has been assumed.

much weaker than the intensity emitted along other directions. On the contrary, for two-level

transitions the polarization of the scattered light is conserved and thus the emission parallel to

the laser polarization is completely suppressed. The strong dependence of the scattered light on

polarization and atomic internal structure is most relevant along the transverse direction. Along

the forward direction those effects are irrelevant, as verified by our numerical simulations. From Eq.

(6.4), the lowest order contribution to the intensity detected along the laser polarization direction

comes from the first order scattering processes, thus I ∝ 1
(∆2+Γ2/4)2 , which lead to a “subradiant”
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line shape (i.e. the full width at half maximum (FWHM), ΓFWHM =
√√

2− 1Γ < Γ, is smaller

than the one for independent particles). The analytic result agrees perfectly with the numerical

simulation at low OD (Fig. 6.6(b)). As the OD increases and interactions become stronger, higher

order scattering contributions lead to a collective broadening (linewidth larger than Γ) even along

this “single dipole forbidden” direction, as shown in Fig. (6.6 (c)).

6.3 Random walk model

In this section we use the random walk model to investigate the role of incoherent scattering

processes in collective emission. We focus on the low-intensity regime. Classically, light transport in

a disordered medium can be described by a sequence of random scattering events experienced by a

photon (see Fig. 6.1(a)) [134, 133, 135]. The expected number of scattering events is roughly given

by (τp)
2, where τp is the peak optical depth, which depends on detuning ∆ as 3N/[k2

0R
2(1+4∆2/Γ2)]

. For simplicity here we also assume a spherical cloud. The transmission of light is given by e−τp

[44]2 . For the J = 0 → J ′ = 1 transition (degenerated J ′ = 1 states), the differential scattering

cross section that defines a scattering event is given by [134, 135]

dσ

dΩ
(kin, εin → kout, εout) =

3σ0

8π
|ε∗in · εout|2, (6.9)

where kin,out is the incident/scattered wavevector, εin,out is the polarization of the incident/scattered

photon [134, 135, 203] and σ0 = 3λ2/[2π(1 + 4∆2/Γ2)], with λ the wavelength of the driving laser.

To simulate the polarization dependent scattering events as dictated by Eq. (6.9), it is con-

venient to use the Stokes-Mueller formalism [103]. A photon in a given state of polarization can be

2 Note: For a cloud with a Gaussian distribution, the size of the incident laser beam needs to be taken into
account, since a broad beam experiences fewer scattering events at the edge of the cloud and the actual optical depth
depends on the transverse coordinates. The finite beamsize is not taken into account in the CD presented here. In
RW we choose the beamsize to be 5 times the Gaussian width of the cloud.
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described by a Stokes vector [35]

S =



S0

S1

S2

S3


=



|El|2 + |Er|2

|El|2 − |Er|2

E∗l Er + ElE∗r

i(E∗l Er − ElE∗r )


, (6.10)

where El, Er are the electric field components projected onto the two orthorgonal axis êl and

êr in the plane perpendicular to the wavevector k. For example, S = (1, 1, 0, 0) represents a

photon linearly polarized along the reference axis êl. A scattering event kin, εin → kout, εout can be

determined by two angles: θ and φ [see Fig. 6.7]. The change of polarization can be obtained from

the transformation S′′ = M(θ)R(φ)Sin, where Sin is the incident Stokes vector, S′′ is defined with

respect to the axis ê′′l , ê
′′
r and ê′′3, and then Sout = R(ψ)S′′ transforming back to the original frame

êl, êr and ê3 [15], with Sout the scattered Stokes vectors. The scattering matrix that we use, M , is

the scattering matrix that describes Rayleigh scattering [103, 135]. It is given by

e03

er el

e3 = kin

e003 = kout

�
e0l

e0r

e00r

e00l

✓

Figure 6.7: RW: transformation of Stokes vectors. In the random walk model, a scattering event is
determined by two consecutive transformations of local coordinates: {e3, er, el} → {e′3, e′r, e′l} via
rotation φ, and {e′3, e′r, e′l} → {e′′3, e′′r , e′′l } via rotation θ [15].

M(θ) =
3

4



cos2θ + 1 cos2θ − 1 0 0

cos2θ − 1 cos2θ + 1 0 0

0 0 2cosθ 0

0 0 0 2cosθ


. (6.11)

The matrix, R(φ), is the rotation matrix that rotates the incident axis êr to ê′r (perpendicular to

the scattering plane),
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R(φ) =



1 0 0 0

0 cos(2φ) sin(2φ) 0

0 −sin(2φ) cos(2φ) 0

0 0 0 1


(6.12)

and R(ψ) is the rotation matrix that transforms the coordinate system ê′′l , ê
′′
r and ê′′3 back to the

original coordinate system êl,êr and ê3, and can be found from θ and φ. The polarization of the

photons is encoded in the Stokes vector. The probability of a scattering event can be directly

calculated from S′′0/S
in
0 . Complete trajectories of the photons can be found from Monte Carlo

sampling of scattering events. As the phase information of photon is not kept in this approach, it is

more suitable for describing classical media or hot atoms where phase coherence is not important.

The polarization of the incident photon is randomized after multiple scattering events. Since

the intensity detected along the polarization direction of the incident photon requires at least two

scattering events, it is suppressed compared to other directions but nonzero (Fig. 6.8(a)) and the

linewidth at small τp also drops below the natural linewidth (Fig. 6.8(c)) along this direction. For

the other directions, the intensity distribution is roughly homogeneous and does not exhibit the

collective enhancement along the forward direction observed in the coherent dipole model. The

FWHM linewidth for different directions increases linearly with OD up to a moderate value of

OD (see Fig. 6.8(b)), and displays a polarization dependence similar to the prediction of CD.

Under this classical treatment more scattering processes are expected to occur with increasing τp

and those processes tend to inhibit the transmission of light. As the scattering becomes more

frequent, forward scattering decreases and more light is scattered backwards [133]. Since τp is

maximum at resonance, ∆ = 0, the linewidth develops a “double-peak” profile as the medium

becomes denser (Fig. 6.8(c)). Before the distortion in line shape develops, the FWHM linewidth

also linearly increases with τp. We note that a similar “double-peak” structure also appears in the

coherent dipole model. However, there, it only happens at specific small angles (see Fig. 6.3(c)), and

never happens along the forward direction, where the stimulated photon emission dominates or the
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Figure 6.8: RW Model. (a) Distribution of on-resonance intensity in the plane θ = π/2. Along
the direction where single scattering events are forbidden (φ = 0), the light intensity is suppressed.
(b) The FWHM linewdith increases linearly with τp in a dilute medium. The linewidth along the
direction parallel to the laser polarization can drop below Γ for small (purple squares). (c) Lin
eshapes for different τps and angles of observation. The line shape is Lorentzian for low τp but gets
distorted and develops a double-peak structure as the τp increases. Here, for all angles, the signal
is collected within a small angular region δθ = 5◦. The intensity is normalized to the value at zero
detuning for θ = 0 and τp=0.3, and the width of laser beam is 5 times the Gaussian width of the
atomic cloud. Here all τp are labeled as the value at ∆ = 0.

transverse direction, where the photons scattered via dipolar exchange dominate. We attribute the

appearance of the “double-peak” structure to the interplay between these two types of emission. In

summary, despite of the fact that the RW model does not include coherent emission mechanisms,

it is able to reproduce the collective broadening observed with increasing optical depth and the

sub-natural linewidth present in the direction parallel to the laser polarization at relatively small

optical depths. The RW model on the other hand ignores coherent elastic dipolar interactions and

thus does not predict a density shift.
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6.4 Role of atomic motion

An assumption made in Sec. 6.2 is that the position of the atoms remains fixed. This

assumption is only valid when atoms move at a rate slower than the radiative decay rate. When

motion is significantly faster, e.g. hot atomic clouds, the coherence during radiation is smeared

out and classical approaches, such as the RW model, are usually satisfactory [258, 36] to describe

collective light emission. However, many experiments operate in an intermediate regime where

coherences cannot be totally disregarded and it is not a good approximation to treat atoms as

frozen. For example, for the 1S0 → 3P1 transition of 88Sr atoms, the Doppler boadening at ∼ 1 µK,

∆D ≈ 6Γ, and recoil frequency ωr = ~k2
0/2m ≈ 0.6Γ, both comparable to the natural linewidth

[108, 254]. Consequently for a proper description of light scattering one needs to account for both

photon coherences and atomic motion on an equal footing. Below we present two approximate

ways to accomplish this:

6.4.1 Modified frozen dipole model

In this section, we discuss a simple way to include the effects of atomic motion on light

scattering via a modified CD model. For a single atom, to leading order, a major modification

from motion in the emitted light intensity is the Doppler shift, a velocity dependent modification of

the effective laser detuning experienced by an atom (see Appendix D.2). We include this effect in

the many-body system by introducing random detunings for each atom, i.e., ∆→ ∆ + δν, and by

sampling them according to a Maxwell-Boltzmann distribution P (δν) = 1√
2π∆̃D

exp

(
− δν2

2∆̃2
D

)
that

accounts for the Doppler shifts [112]. Here ∆̃D = ∆D/
√

8ln2. We denote this approximation as the

modified frozen dipole model. The random detunings modify atomic coherences as (for simplicity

we assume a single beam illumination):

bj =
Ωeik0·rj

(∆− δνj) + iΓ/2
. (6.13)
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Using Eq. (6.13), the intensity along a generic direction becomes

Iincoh =
1√

2π∆̃D

∫
dδνj |bj |2e−δν

2
j /2∆̃2

D . (6.14)

On the other hand, the coherent scattering in the forward direction which takes into account

pairwise atomic contributions, becomes

Icoh =
1

2π∆̃2
D

∫
dδνjdδνj′bjb

∗
j′e
−δν2

j /2∆̃2
De
−δν2

j′/2∆̃2
D . (6.15)

The on-resonance enhancement factor is thus

Icoh

Iincoh
=

√
π
2 e

1

8∆̃2
D
/Γ2

erfc( 1

2
√

2∆̃D/Γ
)

2∆̃D/Γ
, (6.16)

where erfc is the complementary error function. This induces an exponential suppression of the

forward interference that depends on ∆̃D/Γ [33], as shown in Fig. 6.9(a).27
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Figure 2.9: Modified frozen dipole model: peak intensity. (a) Collective forward enhancement: for-
ward intensity normalized by the transverse intensity as a function of Doppler width. (b) Intensity
detected along di↵erent directions at Doppler width �D = 6� as a function of atom number for
fixed cloud size (when N = 500, ⌧=2,n0k

�3
0 =0.0015). I ⇠ N1.6 for ✓ = 0, and I ⇠ N0.7 for ✓ = ⇡/2.

The right vertical axis labels the intensity for ✓ = ⇡/2,⇡/10.
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Figure 2.10: Semi-classical model: single-atom line shape. The excitation line shape is calculated
for three di↵erent driving strength, each normalized by ⌦2. The atomic motion is allowed to be
one-dimensional and parallel to the laser propagating direction. Here we used !r = 0.6� (the value
of the 1S0 ! 3P1 transition of Sr [68]).
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Figure 2.9: Modified frozen dipole model: peak intensity. (a) Collective forward enhancement: for-
ward intensity normalized by the transverse intensity as a function of Doppler width. (b) Intensity
detected along di↵erent directions at Doppler width �D = 6� as a function of atom number for
fixed cloud size (when N = 500, ⌧=2,n0k

�3
0 =0.0015). I ⇠ N1.6 for ✓ = 0, and I ⇠ N0.7 for ✓ = ⇡/2.

The right vertical axis labels the intensity for ✓ = ⇡/2,⇡/10.
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Figure 2.10: Semi-classical model: single-atom line shape. The excitation line shape is calculated
for three di↵erent driving strength, each normalized by ⌦2. The atomic motion is allowed to be
one-dimensional and parallel to the laser propagating direction. Here we used !r = 0.6� (the value
of the 1S0 ! 3P1 transition of Sr [68]).

Figure 6.9: Modified frozen dipole model: peak intensity. (a) Collective forward enhancement: for-
ward intensity normalized by the transverse intensity as a function of Doppler width. (b) Intensity
detected along different directions at Doppler width ∆D = 6Γ as a function of atom number for
fixed cloud size (when N = 500, τ=2,n0k

−3
0 =0.0015). I ∼ N1.6 for θ = 0, and I ∼ N0.7 for θ = π/2.

The right vertical axis labels the intensity for θ = π/2, π/10.

The reduced light scattering probability, on the other hand, competes with dephasing since it

suppresses multiple scattering, and as a consequence promotes collective enhancement. Effectively,

it brings the system closer to the small OD regime (Fig. 6.2(b)). The motion induced suppression

of multi-scattering processes is also signaled in the frequency shift (Fig. 6.4) [112, 114], which keeps

increasing until a larger value of density in the presence of motion.
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6.4.2 Semi-classical approach

Laser light mediated forces on atoms are a fundamental concept in atomic physics and lay the

foundations of laser trapping and cooling [196, 44]. They can be accounted for at the semiclassical

level by explicitly including the position ri and the momentum pi degrees of freedom of the atoms,

and solving for their dynamics while feeding those back into the quantum dynamics of the internal

degrees of freedom. An explicit description of this procedure is presented below.

For simplicity we will assume a two-level transition. This condition is achievable in exper-

iments, for example, by applying a large magnetic field to split apart (|∆α − ∆γ | � GΓ) the

excited state levels and thus energetically suppressing population of the ones not directly driven by

the laser. For driving the atoms we will consider the case of two counter-propagating lasers with

wavevector ±k0, propagating along x, and Rabi frequency Ω. The internal atomic variables evolve

according to (see Appendix D.1)

dbj
dt

= iΩ cos(k0 ·rj)sj−(
Γ

2
+ i∆)bj+i

∑
l 6=j

sjbl(gjl−ifjl),

(6.17)

dsj
dt

= 2iΩ cos(k0 ·rj)(bj −H.c.)− Γsj

−2i
∑
l 6=j

(gjl − ifjl)b∗jbl + 2i
∑
l 6=j

(gjl + ifjl)b
∗
l bj ,

(6.18)

where ∆ = ∆α, and the last terms describe the effect of dipole-dipole interactions g(r) and f(r)

(see Appendix D.1). In general the position of atoms can also change with time as

drj
dt

=
pj
m
, (6.19)

so the response to the local driving field and dipole-dipole interactions in Eq. (6.17) and Eq. (6.18)

change accordingly. The momentum changes not only due to the force exerted by the driving

laser, but also the long-range forces gjl = −∇gjl and fjl = −∇fjl, which originate from the

dispersive and dissipative dipole-dipole interaction, respectively (see Appendix D.1), and depend
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on the instantaneous atomic coherences and positions:

dpj
dt

= −2~k0Ωsin(k0 · ri)<{bi(t)}

+
∑
l 6=j

[gjl(bjb
∗
l + H.c.)− ifjl(bjb∗l −H.c.)]. (6.20)

The atomic coherence and external motion are now coupled together, so Eq. (6.17)∼Eq. (6.20)

need to be solved simultaneously to obtain the dynamics. In deriving Eq. (6.20), we have ignored

the role of momentum diffusion (see Appendix D.1). We have verified in our numerical simulations

that it can be safely ignored for the parameters of interest presented in this work.

From previous sections, it has been shown that except for a narrow cone around the forward

direction, the fluorescence intensity is I(rs) ∝
∑

i si (also see Appendix D.2). Since we expect

motion to further reduce the effect of coherence, we will focus on the transverse scattering, and

compute
∑

i si. Fig. 6.10 shows the line shape of a single atom for different Ω calculated from the

semi-classical approach.
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Figure 6.10: Semi-classical model: single-atom line shape. The excitation line shape is calculated
for three different driving strength, each normalized by Ω2. The atomic motion is allowed to be
one-dimensional and parallel to the laser propagating direction. Here we used ωr = 0.6Γ (the value
of the 1S0 → 3P1 transition of Sr [108]).

As a result of atomic motion, the laser-atom system is not in a stationary state. We show the

results for driving time t = 5/Γ. When Ω � Γ, the line shape is a Voigt profile with the Doppler

width determined by the velocity. When Ω ∼ Γ, there is a distortion in the line shape, with more

intensity at ∆ < 0. This is because for ∆ < 0 the laser force decelerates the atom, while for ∆ > 0
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the atom is heated up. With reduced/increased velocity, the atom is on average more/less excited,

resulting in a distorted line shape. The center of the line is therefore shifted to the red.

Motion can significantly modify the interactions between atoms [57]. We study the effect

of motion on the frequency shift in Fig. 6.11. Dipolar induced frequency shifts were previously

discussed in Sec. 6.2. Since we focus on low driving fields, again we neglect momentum diffusion

in these calculations. The calculations show that unless ∆D is very small, atomic motion leads to

a fast suppression of the frequency shift. Only when ∆D � Γ, the frequency can be increased by

motion and this is the regime where the modified frozen dipole model is qualitatively valid; recall,

it predicts always an increase of density shift with Doppler broadening. We note that at ∆D → 0

the frequency shift obtained using the modified frozen dipole model, is slightly smaller than that

one obtained from the semi-classical approach. This is a consequence of the distortion caused by

laser cooling/heating which additionally shifts the spectral line. For ∆D & Γ motion needs to be

properly accounted for and the modified frozen dipole model is not reliable.
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Figure 6.11: Semi-classical model: effect of motion on frequency shift. Two atoms are driven by a
pair of counter-propagating lasers, with Ω = 0.1Γ, ωr = 0.6Γ. The red dashed line shows the result
of semi-classical model where motion is allowed in three dimensions. The blue line shows the result
from the modified CD. The center of excitation line shape is calculated at t = 5/Γ for different
Doppler width, for both models.
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6.5 Comparison with experiment

In this section, we describe an experiment that measures the collective emission from coher-

ently driven ultracold 88Sr atoms. 88Sr atoms have both a strong 1S0−1P1 blue transition (λ = 461

nm) and a spin-forbidden weak 1S0−3P1 red transition (λ = 689 nm), with a strict 4-level geometry

(Fig. 6.12(a)). When the atoms are cooled to a temperature of ∼1 µK, Doppler broadening at 461

nm is about 55 kHz, which is almost three orders of magnitude smaller than the blue transition

natural linewidth, Γ =32 MHz. To an excellent approximation atomic motion is negligible for

atomic coherence prepared by the 461 nm light. To the contrary, the red transition with a natural

linewidth Γ = 7.5 kHz is strongly affected by atomic motion. By comparing the behaviors of the

same atomic ensemble observed at these two different wavelengths (Fig. 6.12(b)) we can thus collect

clear signatures of motional effects on coherent scattering and dipolar coupling[112, 132].

Figure 6.12: (a) The experimental scheme and concept. We weakly excite the strontium atoms
with a linearly polarized probe beam and measure the fluorescence with two detectors, one in
the forward direction, x̂, and the other almost in the perpendicular direction, ẑ. We probe two
different J = 0 to J’ = 1 transitions. The first transition is a 1S0−1P1 blue transition with a
natural linewidth of Γ = 32 MHz and the second is a 1S0−3P1 red transition with Γ = 7.5 kHz.
(b) In the coherent dipole model photons are shared between atoms. When the Doppler broadened
linewidth becomes comparable to the natural linewidth, dephasing must be considered. At our
∼ 1µK temperatures the Doppler broadening is ≈ 40 kHz meaning motional effects are important
only for the red transition.
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We use the experimental scheme shown in Fig. 6.12(a) to perform a comprehensive set of

measurements of fluorescence intensity emitted by a dense sample of 88Sr atoms. The sample is

released from the trap and then illuminated with a weak probe laser. We vary the atomic density,

cloud geometry, observation direction, and polarization state of the laser field, and we report

the system characteristics using three key parameters: the peak scattered intensity, the linewidth

broadening, and the line center shift. For example, along the forward and transverse directions we

observe different values of intensity and linewidth broadening, as well as their dependence on light

polarization (see Fig. 6.13). We also observe motional effects on the red transition in contrast to

the same measurements on the blue transition.

Figure 6.13: The 3D intensity distribution predicted for a blue probe beam. The coupled-dipole
model predicts a strong 103 enhancement of the forward intensity compared to other directions
and a finite fluorescence along a direction parallel to the incident polarization. The speckled
pattern is due to randomly positioned atoms and can be removed by averaging over multiple atom
configurations.

In the experiment, up to 20 million 88Sr atoms are cooled to ∼1 µK in a two-stage magneto-

optical trap (MOT), the first based on the blue transition and the second on the red transition.

The atomic cloud is then released from the MOT and allowed to expand for a variable time of flight

(TOF), which allows us to control its optical depth and density. They are subsequently illuminated

for 50(100) µs with a large size probe beam resonant with the blue (red) transition (Fig. 6.14(a)).

The resulting scattered light is measured with two detectors far away from the cloud (see Fig. 6.12

(a)). One detector is along the forward direction x̂ (detector DF), and the other transverse direction
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ẑ (detector DT, offset by ∼10◦). For a short TOF, the atomic cloud is anisotropic and has an

approximately Gaussian distribution with an aspect ratio of Rx : Ry : Rz = 2 : 2 : 1 , where

R{x,y,z} are r.m.s radii.

The coherent effect manifests itself most clearly in the forward direction (Fig. 6.14). To

Figure 6.14: Forward Scattering. (a) Comparison of forward scattering intensity versus angle using a
red and blue probe beam. The inset shows the setup used to block the probe beam. After interacting
with the atoms the probe beam is focused using a lens, which also collimates the fluorescence from
the atoms. We block the probe beam using a beam stopper, which we translate perpendicular to the
probe beam to change the angular range of fluorescence collected by the detector, characterized by
the angle (θ) between x̂ and the edge of the beam stopper (see Ref. [33]). The measured intensity,
Ix,0 (θ), for each probe beam is normalized to the intensity at θmax = 7.5 mRad. The dephasing
caused by motion reduces the forward intensity peak for the red transition. (b) Comparison of
intensity in the forward direction, Ix, versus intensity in the transverse direction, Iz. Both are
varied by changing N . All measurements are made at θ = 2 mRad (arrow in (a)) and normalized
to the intensity, Ix,0, for the atom number used in (a). (c) Linewidth broadening in the forward
direction measured by scanning the blue probe beam detuning, ∆, across resonance. Example
lineshapes for different optical depths (ODs) are shown in the inset. Two different atom numbers
are used, N = 1.7(2)× 107 (blue squares) and N/4 (cyan triangles). The dashed line represents Γ
for reference. All solid curves are based on the full theory of coupled dipoles and the band in (c)
is for a ±20% atom number uncertainty. All errorbars are for statistical uncertainties.

separate the forward fluorescence from the probe beam, we focus the probe with a lens (L1) after it

has passed through the atomic cloud and then block it with a beam stopping blade, which can be

translated perpendicular to the probe beam (Fig. 6.14(a) inset). The same lens (L1) also collimates

the atomic fluorescence so that it can be imaged onto DF. The position of the beam stopper can

be used to vary the angular range of collected fluorescence, characterized by the angle (θ) between

x̂ and the edge of the beam stopper (See Ref. [33]). Using the maximum atom number available in
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the experiment, the measured intensity Ix,0 (θ) is normalized to that collected at θmax = 7.5 mRad.

Both the blue (square) and red (triangle) transition results are displayed in Fig. 6.14(a). For the

blue transition a thousand-fold enhancement of the normalized intensity is observed for θ < 0.5

mRad. We note that this enhancement as a function of θ far exceeds the diffraction effect by the

beam stopper. The latter effect becomes significant only when θ . 0.1 mRad, and is also suppressed

in our differential measurement scheme which compares measurements with and without atoms.

The enhancement is also present for the red transition, but it is reduced by nearly two-orders of

magnitude at small θ due to the motional effect. On the other hand, the wider angular area of

enhancement is attributed to the longer wavelength of the red transition. The forward intensity

strongly depends on the atom number. Fig. 6.14(b) shows measurements of the forward intensity Ix

versus the transverse intensity Iz at a fixed θ = 2 mRad for different atom numbers. The intensities

are normalized to those obtained at the peak atom number as used in Fig. 6.14(a). To the first

order approximation, the transverse fluorescence intensity scales linearly with the atom number.

Hence, the forward intensity of both the blue and red transitions scales approximately with the

atom number squared. These observations are consistent with the conclusions obtained in Sec. 6.2.

The solid lines in Figs. 6.14(a) and (b) represent the full solution of the CD model, which agree

with experiment for both transitions.

In the forward direction we have also investigated the linewidth broadening of the blue

transition as a function of the atomic OD. By scanning the probe frequency across resonance we

extract the fluorescence linewidth, which is found to be determined primarily by the OD of the

cloud (open squares in Fig. 6.14(c)). For the range of 0 < OD < 20 the lineshape is Lorentzian (see

insets); however, the observed lineshape starts to flatten at the center for OD>20. We have also

varied the atom number by a factor of four, and to an excellent approximation the linewidth data

is observed to collapse to the same curve when plotted as a function of OD (open triangles). It is

also evident that the scaling of the linewidth vs. OD turns nonlinear at large values of OD. The

experimental data falls within the shaded area in Fig. 6.14(c), which represents the full solution of

CD model with a 20% uncertainty in the experimental atom number.
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For independent emitters the forward fluorescence should have no dependence on the probe

beam polarization; however, the transverse fluorescence (along ẑ) should be highly sensitive to the

probe polarization, and it is even classically forbidden if the probe is ẑ-polarized. However, multiple

scattering processes with dipolar interactions can completely modify this picture by redistributing

the atomic population in the three excited magnetic states and thus scrambling the polarization

of the emitted fluorescence, with an intensity that increases with increasing OD. Consequently,

even for a ẑ-polarized probe there should be a finite emission along ẑ. This is consistent with the

theoretical prediction of the CD model, as shown in Fig. 6.13. The experimental investigation of the

fluorescence properties along the transverse direction is summarized in Fig. 6.15. Under the same

Figure 6.15: Transverse Scattering. (a) Linewidth broadening for the blue transition in the trans-
verse direction for ŷ-polarization (open squares) and ẑ-polarization (open triangles). (b) Intensity
ratio, Iypol/Izpol, of ŷ-polarization to ẑ-polarization measured in the transverse direction when a
blue probe beam is used. For low optical depths single particle scattering is dominant, and for single
particle scattering almost zero intensity is predicted for ẑ-polarized fluorescence as this polarization
points directly into the detector. (c) Linewidth broadening for the red transition in the transverse
direction for ŷ-polarized light showing a similar trend to the blue transition. This transition is
more sensitive to magnetic fields so a large magnetic field is applied to probe only the m = 0 to m’
= 0 transition. All solid curves are based on the full theory of coupled dipoles and the band in (c)
is for a ±20% atom number uncertainty. All errorbars are for statistical uncertainties.

OD along ẑ, the ŷ-polarized probe beam (square) gives rise to a much more broadened lineshape

for the blue transition than the ẑ-polarized probe beam does (triangle), as shown in Fig. 6.15(a).

Meanwhile, the peak intensity ratio of Iypol/Izpol decreases significantly with an increasing OD,

indicating the rapidly rising fluorescence with a ẑ-polarized probe when OD increases (Fig. 6.15(b)).
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For both intensity and linewidth broadening observed in the transverse direction, under either ŷ or

ẑ probe polarization, the full solution of the CD model (shown as shaded areas in both Fig. 6.15(a)

and (b)) reproduces well the experimental results on 1S0−1P1.

For the red transition, the existence of Doppler broadening requires the lineshape data to be

fitted to a Voigt profile. With the Doppler linewidth ∆D fixed from the thermal velocity measured

in free expansion, the Voigt profile determines the line center as well as the Lorentzian linewidth

with the Gaussian linewidth determined by the temperature. Fig. 6.15(c) displays the Lorentzian

linewidth obtained with a ŷ-polarized red probe showing a strong increase of the linewidth with OD.

Taking into account motional dephasing (see Sec. 6.4.1), the transverse broadening for 1S0−3P1 is

also well reproduced as shown in Fig. 6.15(c).

6.6 Conclusion

We theoretically studied the propagation of light through a cold atomic medium. We pre-

sented two different microscopic models, the “coherent dipole model” and the “random walk model”,

and analyzed how the light polarization, optical depth and density affect the linewidth broadening,

intensity and line center shift of the emitted light. We showed that the random walk model, which

neglects photonic phase coherence, can fairly capture the collective broadening (narrowing) of the

emission linewidth but on the other hand does not predict a density shift. Due to the limitation of

computation capacity, the numerical simulation of CD is usually restricted to ∼ 104 atoms, which

is much smaller than that in some cold atom experiments [95, 12]. Nevertheless, the understanding

of the underlying physics allowed us to perform an appropriate rescaling in the cloud size to com-

pare with experiments. We further developed generalized models that explicitly take into account

motional effects. We showed that atomic motion can lead to drastic dephasing and reduction in

the collective effects, together with a distortion in the line shape. While the modified frozen dipole

model predicts a monotonic increase of the density shift with increasing motion, the semiclassical

model, which properly accounts for recoil effects, predicts that this behavior only holds at slow

motion ∆D � Γ. Instead, as atoms move faster, motional effects start to become dominant, the
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cloud expands and the frequency shift decreases. We show, as an explicit example, an experiment

done with 88Sr atoms [33], and apply the CD model to explain all the experiment observations for

the strong transition, where motional effects are weak. The modified frozen dipole model is also

shown to capture the fluorescence intensity and linewidth broadening measured for the weak tran-

sition, where motional effects are significant. None of the presented theoretical models, however,

can explain the large density shift measured in the 1S0 → 3P1 transition of 88Sr atoms [108]. It

will be intriguing to determine what are the actual physical processes that cause this large shift.



Chapter 7

Emergent Weyl excitations in systems of polar particles

7.1 Introduction

Recent predictions [263, 37] and experimental observations [276, 156, 151] of Weyl semimet-

als in solid state systems have instigated intensive studies of their properties, such as non-local

electrodynamics and chiral anomaly [194], topologically protected Fermi arcs on the surfaces [263,

276, 156], non-Anderson disorder-driven transitions[78, 91, 246, 245, 219, 174, 125] and unusual

dependencies of transport properties on doping and temperature [218, 228, 209]. In parallel, enor-

mous research efforts are now directed at finding Weyl excitations in new systems. A promis-

ing platform for exploring Weyl physics is tunable and fully controllable ultracold atomic gases

[139, 117, 4, 70, 81, 150]. However, henceforth proposed cold-atom realisations of Weyl quasipar-

ticles have focussed mostly on non-interacting systems, and all have required implementations of

externally imposed spin-orbit coupling through laser assisted tunneling schemes [139, 117, 4, 70, 81],

other optical means [271, 89, 225], or external rotating fields [150].

In this chapter we demonstrate that excitations with Weyl dispersion generically emerge in

three-dimensional (3D) arrays of dipolar particles in the presence of a weak magnetic field, as a result

of the dipole-interactions-induced transitions between their internal angular-momentum J = 0 and

J = 1 states. These excitations exhibit the same single-particle physics as Weyl fermions [265] but,

similarly to other non-fermionic Weyl excitations [151], their many-particle properties are expected

to be different, opening alternative research directions, new functionalities and applications beyond

those accessible with solid-state systems [276, 156].



91

We also show that, experimentally such excitations can be observed, for instance, in trapped

alkaline-earth atoms (AEAs) in a 3D optical lattice with lattice spacings smaller than the wavelength

of the electronic J = 0→ J = 1 transition. The simple and unique internal structure of these atoms

has already lead to record levels of precision and accuracy in atomic clocks [27]. Taking advantage

of the well developed spectroscopic tools to interrogate and manipulate AEAs, we propose to

probe the Weyl quasiparticle dispersion and non-trivial chirality by means of momentum-resolved

Ramsey spectroscopy. Our proposal opens a path for a feasible experimental realisation of Weyl

quasiparticles in clean and controllable atomic systems. Moreover, it lays the groundwork for the yet

unexplored regime of topologically protected sensing, owing to the topological robustness of Weyl

quasiparticles that could be used to push the stability and accuracy of optical-lattice AEA-based

clocks.

7.2 Phenomenological argument

We assume that the system has long-lived excitations (quasiparticles) with (integer) angular

momentum J. Due to the translational invariance, the (quasi)momentum k is a good quantum

number. In the long-wave limit the effective quasiparticle Hamiltonian is insensitive to the details

of the potential of the periodic lattice that the particles may be placed in. To preserve rotation and

inversion symmetries in the absence of magnetic field the Hamiltonian has to be an even function

of (k · Ĵ) and a function of |k| and Ĵ2. In the presence of a sufficiently weak uniform magnetic field,

ω, that creates a perturbation −ω · Ĵ independent of k in the limit k→ 0, the most generic form

of the quasiparticle Hamiltonian is given by

ĥ(k,J) = F
[
|k|, (k · Ĵ)2, Ĵ2

]
− ω · Ĵ, (7.1)

where F is an arbitrary function of three arguments.

The small quasimomentum k can be measured from any high-symmetry point in the Brillouin

zone characterised by an isotropic dispersion ξk = ξ(|k|) of non-interacting particles in the limit

k→ 0.
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For the particular case of J = 1, the Hamiltonian (7.1) has nodes at momenta K ‖ ω, such

that F (|K|, |K|2, 2) ± ω = F (|K|, 0, 2), corresponding to two intersecting branches with angular

momentum projections Jz = 0 and Jz = 1 or Jz = −1 on the direction of magnetic field. We

note that such nodes always exist for weak magnetic fields and Hamiltonians that are regular as a

function of k.

The excitation Hamiltonian near a node is obtained by expanding the function F in small

momentum p = k−K. For a 3D system, it has Weyl dispersion of the form (see Appendix E)

ĥeff(p) = ζ(p) + v⊥σ̂xpx + v⊥σ̂ypy + v‖σ̂zpz (7.2)

with Pauli matrices σ̂i acting in the space of the respective two angular-momentum projections.

7.3 Model

In what follows we confirm the above phenomenological argument by microscopic calculations

for a 3D system of dipolar particles described by the Hamiltonian

Ĥ =
∑
i

Ĥ0 (ri) +
1

2

∑
i,j

Ĥdip

(
d̂i, d̂j , ri − rj

)
, (7.3)

where d̂i is the dipole moment operator of the i-th particle, and

Ĥ0 (ri) = −∇̂2
i

2m
+ U(ri) +BJĴ

2
i − Ĵi ·B (7.4)

is the single-particle Hamiltonian that includes the particle kinetic energy −∇̂2
i

2m (hereinafter ~ = 1),

the periodic potential U(ri) of the lattice that the system may be placed in, the energy BJĴ
2
i of

internal levels with Ĵi being the angular momentum of the i-th particle, and the interaction −Ĵi ·B

with magnetic field (measured in units of the gyromagnetic ratio) that splits the J = 1 levels.

The most generic form of the dipole-dipole interaction, which accounts for retardation effects,

is given by 1

Ĥdip(d̂i, d̂j , r) = a(r)(r̂ · d̂i)(r̂ · d̂j) + b(r)d̂i · d̂j (7.5)

1 See chapter 2. d̂ =
∑
σ êσd(bσ†i + bσi ). Terms like bσ†i b

σ†
j and bσi b

σ
j do not play an role, since they are enegetically

suppressed. See Appendix E.2 for further explanation.
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where r̂ = r/r; a(r) = 3γ0

4d2 [y2(k0r)− ij2(k0r)] and b(r) = 3γ0

4d2

∑1
n=0(−1)n[yn(k0r)− ijn(k0r)]/(k0r)

for r 6= 0, with yn and jn being the n-th-order spherical Bessel functions of the second and first kind

respectively and k0– the wavevector of the J = 0 to J = 1 transition. The terms proportional to yn

describe elastic interactions between dipoles a distance r apart, while the terms with jn account for

the inelastic collective photon emission (radiation). In this chapter we use γ0 to denote the natural

linewidth of the transition to distinguish it from the high symmetry point Γ. If the dipoles are much

closer to one another than the wavelength of the dipole transition, k0r � 1, retardation effects can

be ignored, and one recovers the more familiar form of the dipolar interactions, a(r) ∝ −3/r3,

b(r) ∝ 1/r3, common for NMR solid-state systems [47], polar molecules [278] and Rydberg atoms

[264, 208].

We note that the above phenomenological derivation of the dispersion of Weyl-type quasi-

particles carries over straightforwardly to other dimensions. For example, a 2D system of dipolar

particles with an in-plane magnetic field hosts 2D Dirac excitations with the dispersion of mono-

layer graphene [183]. We emphasise that such 2D excitations are distinct from the 2D “chiron”

excitations [247] that exist in a perpendicular magnetic field and resemble electrons in bilayer

graphene.

7.4 Atoms in a deep lattice

While the above phenomenological argument demonstrates the existence of Weyl quasiparti-

cles in a generic 3D system of dipolar particles in magnetic field, below we focus on the experimen-

tally important case of particles pinned in a deep unit-filled cubic lattice (Fig. 7.1 (a)) with small

lattice spacing a; ak0 � 1.

We assume that all particles are initially prepared in the Ji = 0 state and that the energy BJ

of internal levels significantly exceeds the interaction strength (usually in dipolar gases [278, 187]

|Ĥdip|/BJ . 10−6), leading to the conservation of the number of sites excited to the J = 1 state to

a good accuracy (cf. Appendix E).

If an excitation with the angular momentum J = 1 is created on site i, the dipole-dipole
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Figure 7.1: Weyl quasiparticles in 3D dipolar arrays. (a) Schematics of the 3D lattice potential
that traps an array of dipolar particles. The lattice is deep enough to pin the particles, most of
which are prepared in the J = 0 ground state (blue spheres). Only a few particles are excited to
the J = 1 states. Dipolar interactions between the J = 0 and J = 1 states give raise to Weyl
excitations. (b) Schematics of dipole mediated interactions: An excited J = 1 state of one particle
can be transferred to another particle in the J = 0 state by dipole-dipole interactions (virtual
photon exchange is shown with a yellow wiggly line). Three types of allowed processes include
|00〉i |1σ〉j ↔ |1σ〉i |00〉j , |00〉i |10〉j ↔ |1,±1〉i |00〉j , and |00〉i |1,±1〉j ↔ |1,∓1〉i |00〉j .

interaction can transfer it to another site j, possibly changing the projection of the angular mo-

mentum on the direction of the magnetic field; |1σ〉i → |1σ′〉j . The quasiparticles in the system are

thus hard-core bosons corresponding to the angular momentum-degrees of freedom that hop from

site to site as described by the effective Hamiltonian (see Appendix E for a detailed derivation)

Ĥlat =
∑
i,j,σ,σ′

Mσσ′
ij b̂†iσ b̂jσ′ =

∑
σσ′k

Mσσ′
k b̂†σ,kb̂σ′,k, (7.6)

Mσσ′
ij = 〈1σ|i〈00|j|Ĥdip

(
d̂i, d̂j, ri − rj

)
|00〉i|1σ′〉j

− σδσσ′δijB. (7.7)

Due to the translational invariance, the single-excitation Hamiltonian can be diagonalised in the

basis of momentum states k, with the results shown in Figs. 7.2a,c. In accordance with the above

general phenomenological argument, for B 6= 0 the dispersion has Weyl nodes (six in the first

Brillouin zone, Figs. 7.2a,c).

To demonstrate the chiral nature of Weyl quasiparticles we show in Figs. 7.2d,e,f the pseu-

dospins 〈σ̂〉 (with the Pauli matrices σ̂i acting in the space of the Jz = −1 and Jz = 0 angular-
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Figure 7.2: Weyl quasi-particle dispersion and eigenstates. (a) Brillouin zone for the simple cubic
lattice. (b) Dispersion along high-symmetry lines in the absence of magnetic field (all energies are
measured in units of (3/4)γ0/(k0a)3). (c) Dispersion in the presence of magnetic field B = γ0/(k0a)3

demonstrating the existence of Weyl nodes (red points) with linear quasiparticle dispersion near
them. Each node is characterised by the monopole charge ±1. In agreement with the fermion
doubling theorem [181] (the Nielsen-Ninomiya no-go theorem), there is an even number (six) of
Weyl points in the first Brillouin zone. (d) Dispersion in the horizontal (kx − ky) plane (shown by
blue color in panel (a)) containing the Weyl node near the R point. Quasiparticles in this plane are
similar to quasiparticles in graphene and are characterised by a non-trivial Berry phase of π. The
arrows show the pseudospin 〈σ̂〉 (the Pauli matrices σ̂i act in the space of the angular-momentum
projections Jz = 0 and Jz = −1). (e) Dispersion along the (yellow in panel (a)) plane consisting of
vectors k = (π+ kd/

√
2, π+ ky, 0.71π+ kd/

√
2) containing the Weyl point. Color shows the weight

of the |1− 1〉 state in the quasiparticle eigenstate, and arrows represent the pseudospin 〈σ̂〉. (f)
Dispersion along the (green in panel (a)) vertical plane (ky − kz) containing the Weyl point near
the R point. For each momentum k the color represents the weight of the |1− 1〉 state .

momentum projections) for the eigenstates with momenta k in the horizontal (pz = 0), tilted

(pz = px), and vertical (px = 0) planes (Fig. 7.2 (a)) that contain a Weyl node. Excitations in these

planes are equivalent to quasiparticles in graphene, the 2D counterpart of a Weyl semimetal, and

are characterised by the non-trivial Berry phase π. Figs. 7.2d,e,f demonstrate that the pseudospins

σ̂ of these states are linked to their momenta p, measured from the Weyl node, in agreement with

the effective Hamiltonian (7.2).
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7.5 Effects of quenched disorder and dissipation

In general, quasiparticles in interacting systems have finite lifetimes due to elastic and inelastic

scattering processes. Indeed, deep optical lattices under consideration are ususlly not completely

filled by particles and thus inherently disordered due to the randomness of the particle disptribution.

Also, spontaneous and dipolar collective emission from the internal J = 1 levels to the ground state

can lead to the decay of the excitations.

To analyse the effects of dissipation in a unit-filled lattice we compute numerically the quasi-

particle dispersion for retarded dipolar interactions, Eq. (7.5), with parameters of the J = 1 to

J = 0 transition of the electronic 3P0 − 3D1 levels of bosonic 88,84Sr atoms trapped in a magic

optical lattice with a = 206.4nm considered in Ref. [187]. The wavelength and the dipole moment

for this transition are 2.6µm and d = 4.03D, leading to the linewidth γ0 = 290 × 103s−1 and the

dissipation parameter ak0 ∼ 0.5. Albeit quasiparticle damping in this regime is rather strong, it

is significantly suppressed (by more than three orders of magnitude) near the Weyl nodes, as our

simulations show, Fig. 7.3 (a) (b). Our results indicate that the quasiparticle scattering in such

a system would be dominated by quenched disorder rather than by collective radiative decay or

spontaneous emission.

To account for the effects of disorder we evaluate numerically the quasiparticle dispersion for

a lattice filling of 93%. This filling fraction could be achieved by preparing a cold bosonic Mott

insulator using moderate atom numbers that allow one to suppress doubly occupied states at the

trap centre. Mott insulators have already been realised with bosonic AEAs in in the ground 1S0

state [239, 235]. These atoms can be excited to the desired 3P0 state by laser pulses [2].

As our simulations demonstrate, the characteristic energy scales of Weyl excitations signifi-

cantly exceed the elastic scattering rate, demonstrating that the excitations could be conveniently

observed in current experiments.
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Figure 7.3: Effects of disorder and dissipation on Weyl quasiparticles. (a) Real part of the
quasiparticle dispersion in the presence of dissipation (including spontaneous emission and collective
radiative decay). The parameters of the J = 1 → J = 0 transition correspond to those of the
electronic 3P0 −3 D1 levels of bosonic 88,84Sr atoms, trapped in a magic optical lattice potential
with a = 206.4nm [187] at unit filling. Momentum k is measured in units π/a. (b) The upper bound
on the inelastic scattering rate estimated from simulating the full quasiparticle spectra including
all allowed elastic and inelastic dipolar processes. The dissipation is significantly suppressed near
the Weyl node (blue line). In striking contrast, the dissipation is enhanced close to the Γ point (red
line) due to the enhanced collective emission (superradiance). (c) Disordered case: Quasiparticle
dispersion for a lattice with filling fraction f = 0.93 in the limit of small dissipation k0a� 1 (the
energy is measured in units γ0/(k0a)3). The line thickness shows the inelastic scattering rate.

7.6 Proposal for experimental observation

For probing the Weyl character of the excitations we propose a Ramsey protocol illustrated

in Fig. 7.4 (a). After preparing a Mott insulator of particles in the J = 0 state, a pulse of interfering

Raman beams is used to create excitations in the |1,−1〉 angular-momentum state with translational

momentum k. Here we consider the case when k is set to be close to the Weyl point with intersecting

Jz = 0 and Jz = −1 branches. For the proposed 3P0− 3D1 electronic levels in Sr, two intermediate

states |e〉, |e′〉 could be used to create the Raman pulses, imparting a net momentum to the atoms

proportional to k = k1 + k2 + k3 (see Fig. 7.4 (a)). A possible excitation level scheme consists on

using 5s6s 3S1 and 5s6p 3P1 as the intermediate |e〉 and |e′〉 levels respectively. After a waiting time

t, another pulse is applied to measure the fraction of particles in the Jz = 0 angular-momentum

state. Because of the interference of the two branches, this fraction oscillates with the frequency



98

|1i
|0i

|gi

(a) 

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

0.10

γ0t

J z
=
0
po
pu
la
tio
n(c) (d) 

�0t
0 5 10 15 20 25

0.00

0.02

0.04

0.06

0.08

0.10

γt

J z
=
-
1
po
pu
la
tio
n

�0t

(e) (f) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.00

0.02

0.04

0.06

0.08

0.10

γ0t

J z
=
0
po
pu
la
tio
n

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.00

0.02

0.04

0.06

0.08

0.10

0.12

γ0t

J z
=
0
po
pu
la
tio
n

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

0.10

γ0t

J z
=
0
po
pu
la
tio
n

�0t �0t

0 10 20 30 40

0.00

0.02

0.04

0.06

0.08

0.10

γ0t

J z
=
0
po
pu
la
tio
n

|�1i

⌦eik·r

(b) kz 

ky 

Weyl point 
× 

|ei

|e0i

⌦

t0

|+i

|�i ⌦

|�1i

|gi

⌦3e
ik3·r

⌦2e
ik2·r

⌦1e
ik1·r

Figure 7.4: Observation of Weyl quasiparticles. (a) Momentum-selective Ramsey spectroscopy:
interfering Raman beams create an excitation with the angular momentum projection Jz = −1 and
with translational momentum k near the Weyl node (see text). After a waiting time t the second
pulse is applied to measure the fraction of particles in the Jz = 0 angular-momentum state. (b)
Six quasimomenta near the Weyl node. (c) The fraction of particles in the Jz = 0 state oscillates
as a function of time t with the frequency (E1

k − E2
k)/(2π), where E1

k − E2
k is the energy splitting

between the two branches of the quasiparticle dispersion. (d) The oscillations in the presence of
dissipation for k0a ∼ 0.5. (e) The oscillations in a 99% randomly filled lattice. (f) The oscillations
in a 93% filled lattice. For (c) and (d) a 3D cubic lattice of 100× 100× 100 sites was used and we
took advantage of the translational symmetry. For (e) and (f) a 3D cubic lattice of 10 × 10 × 10
was used.

(E1
k − E2

k)/(2π), where the energy splitting E1
k − E2

k between the two branches is linear in k and

vanishes near the Weyl node.

Another signature of the Weyl node is the strong dependency of the amplitude of such

oscillations on momentum k near the node, as the amplitude is determined by the projection of
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the Bloch vector on k̂z (the magnetic field direction).

In Fig. 7.4 (c-f) we show the fraction of particles in the Jz = 0 state as a function of time at

the end of the above described Ramsey protocol, for the six different quasi-momenta in the kz− ky

plane near the Weyl point indicated in Fig. 7.4 (b). Panel (c) shows the dynamics for an ideal unit

filled lattice in the dissipationless limit k0a � 1. Panel (d) shows the dynamics in the presence

of dissipation for the experimentally relevant scenario discussed above. The population dynamics

in disordered systems is shown in panels (e) and (f) for 99% and 93% filled lattices respectively.

Quasiparticles scattering on empty sites in a disordered system leads to the decay of the oscillations.

7.7 Conclusion

We demonstrated that Weyl quasiparticles generically emerge in 3D systems of polar par-

ticles in magnetic field. This opens intriguing prospects of observing chiral anomaly, non-local

electrodynamics, non-Anderson disorder-driven transitions, and other fascinating phenomena in

the realm of fully controllable atomic systems. We showed that observing Weyl excitations is cur-

rently possible in arrays of AEA in 3D lattices, in particular, using the 3P0 − 3D1 levels of bosonic

Sr atoms. Other experimentally convenient schemes, that deserve further exploration, include using

metastable levels of Sr or Yb atoms that can be trapped in magic lattices with spacings smaller

than the wavelength [215] or arrays of polar molecules with the rotational levels dressed to avoid the

splitting of J = 1 levels in the presence of hyperfine interactions [278]. The long lifetimes and the

topological character of Weyl excitations in interacting dipolar systems also open new possibilities

for implementing optical-lattice clocks with sensing capabilities beyond those of non-interacting

systems.
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J. Ye. Inelastic collisions and density-dependent excitation suppression in a 87sr optical lattice
clock. Phys. Rev. A, 84:052716, 2011.

[24] Immanuel Bloch. Ultracold quantum gases in optical lattices. Nature Physics, 1(1):23–30,
2005.

[25] Immanuel Bloch, Jean Dalibard, and Sylvain Nascimbène. Quantum simulations with ultra-
cold quantum gases. Nature Physics, 8(4):267–276, 2012.

[26] Immanuel Bloch, Jean Dalibard, and Wilhelm Zwerger. Many-body physics with ultracold
gases. Rev. Mod. Phys., 80:885–964, Jul 2008.

[27] B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang,
S. L. Bromley, and J. Ye. An optical lattice clock with accuracy and stability at the 10-18
level. Nature, 506:71, 2014.

[28] S. De Boer and D. A. Wiersma. Dephasing-induced damping of superradiant emission in
j-aggregates. Chemical Physics Letters, 165:45, 1990.



102

[29] Justin G Bohnet, Zilong Chen, Joshua M Weiner, Dominic Meiser, Murray J Holland, and
James K Thompson. A steady-state superradiant laser with less than one intracavity photon.
Nature, 484(7392):78–81, 2012.

[30] Justin G Bohnet, Zilong Chen, Joshua M Weiner, Dominic Meiser, Murray J Holland, and
James K Thompson. A steady-state superradiant laser with less than one intracavity photon.
Nature, 484(7392):78–81, 2012.

[31] P. C. Bons, R. de Haas, D. de Jong, A. Groot, and P. van der Straten. Quantum enhancement
of the index of refraction in a bose-einstein condensate. Phys. Rev. Lett., 116:173602, Apr
2016.

[32] C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet. Evidence of bose-einstein
condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75:1687–1690,
Aug 1995.

[33] Sarah L Bromley, Bihui Zhu, Michael Bishof, Xibo Zhang, Tobias Bothwell, Johannes
Schachenmayer, Travis L Nicholson, Robin Kaiser, Susanne F Yelin, Mikhail D Lukin,
et al. Collective atomic scattering and motional effects in a dense coherent medium. Nature
communications, 7:11039, 2016.

[34] Daniel WC Brooks, Thierry Botter, Sydney Schreppler, Thomas P Purdy, Nathan Brahms,
and Dan M Stamper-Kurn. Non-classical light generated by quantum-noise-driven cavity
optomechanics. Nature, 488(7412):476–480, 2012.

[35] C. Brosseau. Fundamentals of polarized light: a statistical optics approach. Wiley-interscience
publication. John Wiley, 1998.

[36] W. Brown and K. Mortensen. Scattering in Polymeric and Colloidal Systems. Gordon and
Breach, New York, 2000.

[37] A. A. Burkov and Leon Balents. Weyl semimetal in a topological insulator multilayer. Phys.
Rev. Lett., 107:127205, 2011.

[38] SL Campbell, RB Hutson, GE Marti, A Goban, N Darkwah Oppong, RL McNally, L Son-
derhouse, JM Robinson, W Zhang, BJ Bloom, et al. A fermi-degenerate three-dimensional
optical lattice clock. arXiv preprint arXiv:1702.01210, 2017.

[39] Howard Carmichael. An Open Systems Approach to Quantum Optics, Lectures Presented at
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[95] William Guerin, Michelle O. Araújo, and Robin Kaiser. Subradiance in a large cloud of cold
atoms. Phys. Rev. Lett., 116:083601, Feb 2016.

[96] Fritz Haake, Mikhail I. Kolobov, Claude Fabre, Elisabeth Giacobino, and Serge Reynaud.
Superradiant laser. Phys. Rev. Lett., 71:995–998, Aug 1993.

[97] Fritz Haake, Mikhail I. Kolobov, Carsten Seeger, Claude Fabre, Elisabeth Giacobino, and
Serge Reynaud. Quantum noise reduction in stationary superradiance. Phys. Rev. A, 54:1625–
1637, Aug 1996.

[98] Klemens Hammerer, Anders S. Sørensen, and Eugene S. Polzik. Quantum interface between
light and atomic ensembles. Rev. Mod. Phys., 82:1041–1093, Apr 2010.

[99] Y.-J. Han, Y.-H. Chan, W. Yi, A. J. Daley, S. Diehl, P. Zoller, and L.-M. Duan. Stabilization
of the p-wave superfluid state in an optical lattice. Phys. Rev. Lett., 103:070404, Aug 2009.

[100] Kaden R A Hazzard, Salvatore R Manmana, Michael Foss-Feig, and Ana Maria Rey. Far-
from-equilibrium quantum magnetism with ultracold polar molecules. Phys. Rev. Lett.,
110(7):075301, 2013.

[101] Kathrin Henschel, Johannes Majer, Jörg Schmiedmayer, and Helmut Ritsch. Cavity qed with
an ultracold ensemble on a chip: Prospects for strong magnetic coupling at finite tempera-
tures. Phys. Rev. A, 82:033810, Sep 2010.

[102] M. J. Holland, B. DeMarco, and D. S. Jin. Evaporative cooling of a two-component degenerate
fermi gas. Phys. Rev. A, 61:053610, Apr 2000.



107

[103] J.W. Hovenier, C.V.M. Mee, and H. Domke. Transfer of Polarized Light in Planetary
Atmospheres: Basic Concepts and Practical Methods. Astrophysics and Space Science Li-
brary. Springer, 2004.

[104] Kerson Huang and C. N. Yang. Quantum-mechanical many-body problem with hard-sphere
interaction. Phys. Rev., 105:767–775, Feb 1957.

[105] Chen-Lung Hung, Xibo Zhang, Nathan Gemelke, and Cheng Chin. Accelerating evapora-
tive cooling of atoms into bose-einstein condensation in optical traps. Physical Review A,
78(1):011604, 2008.

[106] Michael R. Hush, Weibin Li, Sam Genway, Igor Lesanovsky, and Andrew D. Armour. Spin
correlations as a probe of quantum synchronization in trapped-ion phonon lasers. Phys. Rev.
A, 91:061401, Jun 2015.

[107] Philipp Hyllus, Wies law Laskowski, Roland Krischek, Christian Schwemmer, Witlef Wiec-
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[200] Goulven Quéméner and John L. Bohn. Electric field suppression of ultracold confined chemical
reactions. Phys. Rev. A, 81:060701, Jun 2010.
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Appendix A

Theoretical approaches for evaporative cooling with long-range interactions

A.1 Monte Carlo simulation for evaporative cooling

With its stochastic nature, the Monte Carlo method is capable of simulating the individual

collisions that are intrinsic to evaporative cooling phenomena [270, 64, 269], and this leads to a flexi-

ble algorithim in which it is easy to incorporate a variety of different conditions in a straightforward

way. The detailed simulation algorithm consists mainly of the following steps:

1. Preparation of an ensemble of particles with coordinates and velocities generated from a

given probability distribution, e.g. an initial equilibrium Boltzman distribution.

2. Evolution of the particles between collisions that follows the classical Hamilton’s equations

of motion, i.e.

dx

dt
= v,

dv

dt
= −∇V (x), (A.1)

where V (x) is the external potential. The time step is chosen to be both small enough to guarantee

numerical convergence for the computed trajectory, as well as much less than the time between

adjacent collision events.

3. Checking every pair of particles to decide if there is a collision. Since we are interested

in two-body collisions, the collision events are determined by the distance between particles. This

distance is characterized by the scattering length as. In three-dimensional collisions, there is a

collision cross-section with units of area, σ = πa2
s. In two-dimensional collisions, there is an
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analogous cross-section with units of length, λ = 2as.

4. Changing the state of the pair of paticles if they collide. For an elastic collision event, the

velocities after collisions are determined from the conservation of total momentum and energy. The

scattering angle is simulated from a probability distribution determined by the differential cross-

section. For instance, in two-dimensional s-wave scattering, the outgoing angles φ are uniformly

distributed in the interval [0, 2π), while for p-wave scattering, the distribution of the outgoing

angles follows the distribution cos2 φ. In three-dimensional isotropic scattering, there are two

random angles: an azimuthal angle φ uniformly distributed in the interval [0, 2π) and a polar angle

θ from uniformly distributed according to cos θ. The non-uniform distribution of the scattering

angles does not affect the collision rate that is determined by the total cross-section, but the rate

of redistributing energies does vary. For an inelastic collision event corresponding to two-body

reactive collisions, the two particles are lost from the trap after the collision, and thus deleted from

the simulation when such processes occur.

5. Averaging over many initial samples and trajectories. The physical quantities such as the

total number of particles, temperature, collision rate and phase space density can be computed

statistically from the simulation ensemble.

A.2 Kinetics of evaporative cooling in 2D

An alternative algorithm which is partially analytic can be derived by assuming that in the

process of evaporative cooling, the energetic particles can be efficiently removed from the trap. The

system is assumed to follow a truncated Boltzmann distribution f(x,p) (Eq. 3.12), with a cut-off

energy εt [155, 102], meaning that there is no particle with energy E > εt. Then similar to the

description of an equilibrim ensemble, the measured quantities of the system can be expressed by

averaging over this distribution function. For example, the collision rate is

γ =
λΛ2

m

∫
ε1,ε2

d2xd2p1d
2p2

× f(x,p1)f(x,p2)|p1 − p2|, (A.2)
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in which Λ = 1/(2π~)2, ε1,2 = p2
1,2/2m + V (x1,2) are the energies of the incident particles. For

simplicity, here we have assumed isotropic energy-independant elastic and inelastic collisions, so λ

in Eq. (A.2) is constant. We also assume the two-body inelastic collisions happen rate ζγ. During

forced evaporative cooling, εt decreases with time, so does the temperature T , and the distribution

function f = f(x,p). As a result, the evolution of the system from t to t′ can be modeled via

three steps: the change due to f when εt decreases to ε′t (dN1, dE1), the change due to evaporation

(dN2, dE2), and the change due to the inelastic losses (dN3, dE3). These can be represented by the

following equations:

dN1 = Λ

∫ εt

ε=ε′t

d2xd2pf, (A.3)

dE1 = Λ

∫ εt

ε=ε′t

d2xd2pεf, (A.4)

dN2

dt
=

λΛ2

m

∫
Σ
d2xd2p1d

2p2dφ
′f1f2|p1 − p2|, (A.5)

dE2

dt
=

λΛ2

m

∫
Σ
d2xd2p1d

2p2dφ
′sf1f2|p1 − p2|ε4, (A.6)

dN3

dt
= ζ

λΛ2

m

∫
Σ′
d2xd2p1d

2p2f1f2|p1 − p2|, (A.7)

dE3

dt
= ζ

λΛ2

m

∫
Σ′
d2xd2p1d

2p2(ε1 + ε2)f1f2|p1 − p2|,

(A.8)

where f1, f2 are the distribution function for each of the two colliding particles, φ′ specifies the

scattering angle, ε = ε(x,p) is the energy of a particle and is a function of the coordinate and

momentum of the particles, ε3 and ε4 are energies after collision, which are determined once p1, p2

and φ′ are known, and Σ = {ε1, ε2, ε3 < ε′t, ε4 > ε′t} and Σ′ = {ε1, ε2 < ε′t} specify the integration

region. These contributions add up to give the total changes: N(t′) = N(t) − dN1 − dN2 − dN3

and E(t′) = E(t)− dE1 − dE2 − dE3. The new temperature T (t′) is found from

N(t′) = Λ2

∫ ε′t

0
d2xd2pf(x,p), (A.9)

E(t′) = Λ2

∫ ε′t

0
d2xd2pf(x,p)ε. (A.10)
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Then the trajectory of evaporative cooling in two-dimensional traps can be solved from the above

equations. Similar calculations also apply to three-dimensional harmonic traps, and the results are

equivalent to solving the rate equations following the method developed by Walraven et al., as

long as the truncated Boltzmann distribution is a good approximation [155].

A.3 Master equation approach for losses in a quasi-2D trap

Represented in the basis of harmonic oscillator eigenstates, the rate coefficients Γn,m defined

in the jump operators in Sec. 3.5 can be written explicitly for intraband collisions (nz = mz,

FIG. 3.7(a)) [162]

Γn,m = Γ̃(1)

=
3
√

2πb3p
√
ωrωz

(arho)3
Is(nz,mz, nz,mz)

×
∑
σ 6=σ′

Is(nσ,mσ, nσ,mσ)Ip(nσ′ ,mσ′ , nσ′ ,mσ′),

(A.11)

and for interband collisions (nz 6= mz, FIG. 3.7(b))

Γn,m = Γ̃(2)

=
3
√

2πb3p
√
ωrωz

(arho)3

∑
σ1 6=σ2 6=σ3

ωσ2

ωr
Is(nσ1 ,mσ1 , nσ1 ,mσ1)

×Ip(nσ2 ,mσ2 , nσ2 ,mσ2)Is(nσ3 ,mσ3 , nσ3 ,mσ3),

(A.12)
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where σ, σ′ = {x, y}, σ1, σ2, σ3 = {x, y, z}, arho =
√

~/mωr,

Is(n,m, p, q) =

∫
du
e−2u2

Hn(u)Hm(u)Hp(u)Hq(u)

π
√

2n+m+p+qn!m!p!q!
,

(A.13)

Ip(n,m, p, q) =

∫
du

e−2u2

π
√

2n+m+p+qn!m!p!q!

×[∂Hn(u)Hm(u)−Hn(u)∂Hm(u)]

×[∂Hp(u)Hq(u)−Hp(u)∂Hq(u)],

(A.14)

and Hn, Hm, Hp, Hq are Hermite polynomials.
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Modeling dissipative dynamics

We model the dissipative dynamics by means of a master equation for the density operator

ρ̂:

d

dt
ρ̂ = − i

~
[Ĥ0, ρ̂] + Lρ̂, (B.1)

with Ĥ0 describing the unitary evolution and Lρ̂ = 1
2

∑
j(ρ̂Ĉ

†
j Ĉj + Ĉ†j Ĉj ρ̂ − 2Ĉj ρ̂Ĉ

†
j ) accounting

for dissipation. In a 1D tube with a superimposed lattice potential, Ĥ0 = −J∑j,σ(ĉ†jσ ĉj+1σ +

h.c.) + V̂trap, where J represents the hopping of molecules between sites, and V̂trap represents the

parabolic trapping potential. The two-body losses that occur between KRb molecules are described

by jump operators Ĉj =
√

Γ0ĉj↑ĉj↓, which destroy a pair of molecules in different rotational states

(|↑〉 or |↓〉) at the same site j, and Γ0 is the on-site loss rate. In the regime Γ0 � J/~, the

doubly occupied states can be adiabatically eliminated [82], projecting the Hilbert space to states

with at most one molecules per site. As a result, the jump operators Ĉj are replaced by Âj =

√
2Γeff

[
(ĉj↑ĉj+1↓ + ĉj↑ĉj−1↓) − (ĉj↓ĉj+1↑ + ĉj↓ĉj−1↑)

]
, and Γeff = 2(J/~)2/Γ0. These new jump

operators Âj effectively remove spin singlet states formed in neighoring sites, and account for

second order tunneling processes. Even within the reduced space, the above master equation

is generally difficult to solve for experimentally relevant lattice sizes. In 1D, however, various

numerical techniques can be applied. In the following we provide the details of the numerical

methods utilized in this paper for solving the above master equation.
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B.1 Mean-field treatment (MF)

The above master equation can be significantly simplified by adopting a MF ansatz that

allows for efficient numerical treatment of realistic system sizes. Under this ansatz, ρ̂ =
∏
j ρ̃j

with ρ̃j ≡
∑

α,β={↑,↓,0} ρ
α,β
j |α〉〈β|. ↑, ↓, 0 label the three possible local states of spin up, spin down,

and the vacuum, respectively. Solving the master equation reduces to solving a set of coupled and

non-linear differential equations for ρα,βj :

dρσσj
dt

=
i

~
J
∑
l

(ρσ0
l ρ

0σ
j − ρ0σ

l ρ
σ0
j ) + 2Γeff

∑
l

(ρσ
′σ
l ρσσ

′
j + ρσσ

′
l ρσ

′σ
j )− 4Γeff

∑
l

ρσ
′σ′
l ρσσj , (B.2)

dρσσ
′

j

dt
=

i

~
(Ωσ − Ωσ′)j

2ρσσ
′

j +
i

~
J
∑
l

(ρσ0
l ρ

0σ′
j − ρ0σ′

l ρσ0
j ) + 2Γeff

∑
l

∑
α

(ρσσ
′

l ρααj − ρααl ρσσ
′

j ),

(B.3)

dρ0σ
j

dt
=

i

~
Ωσj

2ρ0σ
j +

i

~
J
∑
l

(
∑
α

ρ0α
l ρ

ασ
j − ρ0σ

l ρ
00
j ) + 2Γeff

∑
l

(ρσ
′σ
l ρ0σ′

j − ρσ
′σ′
l ρ0σ

j ), (B.4)

dρσ0
j

dt
= − i

~
Ωσj

2ρσ0
j +

i

~
J
∑
l

(ρσ0
l ρ

00
j −

∑
α

ρα0
l ρ

σα
j ) + 2Γeff

∑
l

(ρσσ
′

l ρσ
′0
j − ρσ

′σ′
l ρσ0

j ), (B.5)

dρ00
j

dt
=

i

~
J
∑
l

∑
α

(ρ0α
l ρ

α0
j − ρα0

l ρ
0α
j ) + 4Γeff

∑
l

∑
α6=α′

∑
β 6=β′

(−1)δαβραβl ρα
′β′

j , (B.6)

where σ, α, α′, β, β′ ∈ {↑, ↓}, σ 6= σ′, the summation of l is over the nearest neighbors of j, and

Ω↑(↓) = 1
2mω

2
↑(↓)a

2 with a the lattice spacing. In deriving the above Eqs. (B.2)-(B.6), we have

neglected terms such as n̂jσ ĉ
†
j+1σ′ ĉj−1σ′ ρ̂ and ĉ†j+1σ ĉjσ ĉ

†
jσ′ ĉj−1σ′ ρ̂ in Lρ̂, which correspond to the

correlated hopping processes involving three sites. We have performed calculations to confirm the

contributions from these terms are small for the systems we treat in this paper.

B.2 Rate equation (RE)

A further simplification can be obtained by neglecting the dynamical redistribution of molecules

and the effect of inhomogeneity, as well as coherences. This is equivalent to dropping the unitary

evolution terms in Eqs. (B.2)-(B.6), and setting all off-diagonal terms of the density matrix ρ̃j to

0. With these approximations, for a 50:50 mixture of molecules, ρ↑↑j = n↑ = ρ↓↓j+1 = n↓, Eq. (B.2)
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simplifies to

dn↓
dt

= −8Γeff [n↓(t)]
2, (B.7)

which is the same as the RE Eq. (3) in the main text. The RE gives a fairly good understanding of

the loss dynamics at short times, as discussed in the main text. However, a quantitative estimate

of the filling fraction requires going beyond these approximations. This can be accomplished by

using the MF treatment.



Appendix C

Phase coherence and correlations in interacting dipoles

C.1 Mean-field approach

The mean-field ansatz, ρ̂ =
⊗

a ρ̂a, reduces the dynamics to 3N coupled nonlinear differential

equations presented in the main text. In the most generic case we define local order parameters to

take into account the effect of the inhomogeneous couplings:

Xae
iΦ =

∑
b 6=a

f(rab)S
⊥
b e

iφb , Yae
iΦ =

∑
b6=a

g(rab)S
⊥
b e

iφb .

If the local order parameters vary slowly over the system size, and can be approximated to be the

same for all dipoles one can define Xa ≈ feffZ, Ya ≈ geffZ, where the global order parameter Z is

defined as ZeiΦ = 1
N

∑
a S
⊥
a e

iφa and the effective couplings are given by feff =
∑

a

∑
b6=a f(rab)/(N−

1) and geff =
∑

a

∑
b 6=a g(rab)/(N − 1).

The steady-state solution Ż = 0, Φ = ω̄t leads to two self-consistent equations for the order

parameter Z and the collective frequency ω

Z =
∑N

a
ZP [feffQ+2geff(δa+ω)]

NQ[4(δa+ω)2+(2f2
effZ

2+2g2
effZ

2+Q2]
, (C.1)

0 =
∑N

a
ZP [geffQ−2feff(δa+ω)]

NQ[4(δa+ω)2+(2f2
effZ

2+2g2
effZ

2+Q2]
, (C.2)

which can be evaluated in the N → ∞ limit as integrals when the detunnings δa have a known

distribution.

We note that in this treatment, when g(rab) 6= 0, the elastic couplings simply induce a global

frequency shift ω = geffQ/(2feff) that can be eliminated by moving to a rotating frame. However, as



128

discussed in the main text the role of elastic interactions is not just to introduce a simple rotation.

In fact the elastic terms tend to generate entanglement and correlations which can not be capture

by a simple mean-field treatment. Therefore the applicability of the mean-field solution is restricted

to regimes where elastic interactions are highly suppressed.

C.2 Cumulant expansion approach and two-time correlation between dipoles

The cumulant expansion method is a useful theoretical tool for including correlation effects

beyond the mean-field approximation [166, 274, 101]. We keep two-point correlations such as

〈σ̂+,−,z
a σ̂+,−,z

b 〉, but factorize three-point correlations and higher [128]:

〈σ̂αa σ̂βb σ̂γc 〉 = 〈σ̂αa σ̂βb 〉〈σ̂γc 〉+ 〈σ̂αa 〉〈σ̂βb σ̂γc 〉+ 〈σ̂αa σ̂γc 〉〈σ̂βb 〉

−2〈σ̂αa 〉〈σ̂βb 〉〈σ̂γc 〉. (C.3)

This factorization closes the set of dynamical equations of motion for all single particle observables

〈σ̂+,−,z
a 〉 and equal time two-point correlations. Two-time correlation functions can be computed

by solving [40]:

d〈σ̂+
a (t+ τ)σ̂−b (t)〉

dτ
= −

[
iδa +

Γ +W

2

]
〈σ̂+
a (t+ τ)σ̂−b (t)〉

+
1

2
fab〈σ̂za(t)〉〈σ̂+

b (t+ τ)σ̂−b (t)〉

+
1

2

∑
j 6=a,b

faj〈σ̂za(t)〉〈σ̂+
j (t+ τ)σ̂−b (t)〉,

where we have introduced the approximation 〈σ̂za(t+ τ)σ̂+
j (t+ τ)σ̂−b (t)〉 ≈ 〈σ̂za(t)〉〈σ̂+

j (t+ τ)σ̂−b (t)〉.

Comparisons with exact numerical solutions show that the cumulant expansion captures well the

steady-state behavior for inhomogeneous couplings f(rab), provided the elastic couplings g(rab) are

sufficiently small. In Fig. C.1 we compute the pair-wise two-time correlation function, Za,b(τ) ≡

limt→∞〈(σ̂+
a (t+ τ) + σ̂+

b (t+ τ))(σ̂−a (t) + σ̂−b (t))〉, using both the cumulant expansion and the exact

solution. The decay rate of these correlations, Za,b(τ) = Ae−τγ , encodes information about the

spectral coherence of the emitted radiation (note that here ν = 0). The result shows that Γ/γ

exhibits the same dependence on W/Γ as ZQ.
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Figure C.1: Pair-wise two-time correlation functions in the steady-state parametrized by Z1,2(τ) =
Aexp(−γτ). The correlations are calculated for a pair of dipoles in an ensemble of N = 70 dipoles
identically coupled with f(rab) = feff/N . The cumulant expansion solution agrees with the full
calculation except at W � Γ where subradiant behavior dominates (purple region) [166].

C.3 Conditional evolution, entanglement and quantum correlations

An individual experimental realization can be considered as a single trajectory, whose evolu-

tion can be quite different from the ensemble averaged solution of the master equation. Tracking

the evolution of an individual trajectory is equivalent to performing continuous measurements that

collect the record of the emitted photons, for example homodyne measurements. The conditional

evolution of the system subject to continuous measurements can be modeled by the method of quan-

tum state diffusion [40, 268]. For a single run the state of the system remains pure, ρ̂c = |ψ〉 〈ψ|,

but the average over many trials reduces the system into a mixed state and recovers the density

matrix obtained from the master equation.

To probe the entanglement of the dipoles, in Fig. 2 we calculate the average quantum Fisher

information for each individual trajectory [107, 237]

FQ(ρ̂c) =
1

3
(FQ(ρ̂c; Ĵx) + FQ(ρ̂c; Ĵy) + FQ(ρ̂c; Ĵz)),

where FQ(ρ̂c; Ĥ) = 4(〈ψ| Ĥ2 |ψ〉−〈ψ| Ĥ |ψ〉2), and Ĵx,y,z are collective angular momentum operators.

States with zero entanglement can still be nonclassical. Two systems are correlated if they

share information with each other. The total amount of correlation can be quantified by the quan-
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tum mutual information I = SA+SB−SAB, where Si is the von Neumann entropy of the subsystem

i ∈ {A,B,AB} (AB is the total system spanned by A and B together) , Si = −Tr[ρ̂ilog2ρ̂i], with

ρ̂i the reduced density matrix of the subsystem i. A value varying between 0 and 2 is obtained

when A and B are pure states or maximally correlated respectively. The mutual information can be

separated into a classical and a quantum part. The classical part is JB|A = max{SB−SB|A}. Here

SB|A is the von Neumann entropy of subsystem B conditioned on the measurement performed on

A and max represents maximum value obtainable over all local measurements on A. The quantum

part, known as the quantum discord, DB|A = I − JB|A, measures the amount of correlations that

exceed the classical part and characterizes the “quantumness” of the system [171]. A state with

nonzero quantum discord behaves in a way intrinsically non-classical, since a local measurement

performed on one of its subsystems can disturb the whole system. In order to calculate JB|A, we

consider a set of von Neumann measurements Π̂A
k=1,2 = 1

2(1± ~nk · ~σA) with |~nk|2 = 1, made on the

subsystem A and minimize the corresponding conditional entropy SB|A =
∑2

k=1 Tr[pkS(ρ̂B|ΠAk )],

where pk = Tr[Π̂A
k ρ̂], ρ̂B|ΠAk = TrA[Π̂A

k ρ̂]/pk [171]. In Fig. 2(e) we calculate the mutual information

from I and the quantum discord from D using as subsystems A and B a pair of dipoles, a and b

respectively.
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Combining dipole-dipole interaction and motion

D.1 Long-range dipole-dipole interaction, force and diffusion

In Chapter 2, we presented a derivation of dipole-dipole interactionsbased on a direct fac-

torization of the atomic and photonic density matrices. Here we adopt an alternative approach,

and derive the form of dipole-dipole interactions and the corresponding forces for two-level moving

atoms, with ωa = k0c the frequency of transition and d the dipole moment. We include motion

in the dipolar coupling after eliminating the electromagnetic vacuum modes. The Hamiltonian,

including the atoms and free-space electromagnetic field is

H = ~ωa
∑
j

b̂†j b̂j +
∑
k,ε

ωkâ
†
kεâkε −

∑
j

∑
k,ε

gk

×(d · ε̂k)[(eik·rj âkε + H.c.)(b̂†j + H.c.)]. (D.1)

The atomic dipoles and the field modes evolve according to

dâkε
dt

= −iωkâkε +
i

~
∑
j

gk(dj · εk)[e−ik·rj (b̂j + H.c.)],

(D.2)

db̂j
dt

= −iωab̂j + i
∑
k,ε

gk
~

(dj · ε̂k)[eik·rj âkεŝj + H.c.],

(D.3)

dŝj
dt

= −i
∑
k,ε

gk
~

(dj · ε̂k)[eik·rj âkεb̂
†
j − e−ik·rj â

†
kεb̂j

−eik·rj âkεb̂j + e−ik·rj â†kεb̂
†
j ], (D.4)
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where ŝj = b̂†j b̂j − b̂j b̂
†
j , and sj = 〈ŝj〉 gives the inversion of the jth atom. We have assumed

that internal operators commute with external operators, and neglected the diffusion of the atomic

wavepacket. Eq. (D.2) can be formally integrated to obtain

âkε(t) = âkε(0)− i
∑
j

gk
~

(dj · ε̂k)

∫
dt′ eik·rj+iωk(t′−t)

×(b̂j + H.c.). (D.5)

Assuming the external motion is much slower than the internal dynamics relevant inside the integral,

so that rj(t
′) ≈ rj(t), and the interaction between atoms and the field modes is weak so that

b̂j(t
′) ≈ b̂j(t)e

−iωa(t′−t). Substituting Eq. (D.5) into Eq. (D.3), we obtain the equation for the

quantum averaged quantities

db̂j
dt

= −iωab̂j + ŝj
∑
l

∑
k,ε

g2
k

~2
(dj · ε̂k)(dl · ε̂k)

×{eik·rjl [b̂†l (πδ(ωk + ωa)− iP
1

ωk + ωa
)

+b̂l(πδ(ωk − ωa)− iP
1

ωk − ωa
)]

−e−ik·rjl [b̂†l (πδ(ωk − ωa) + iP
1

ωk − ωa
)

+b̂l(πδ(ωk + ωa) + iP
1

ωk + ωa
)]}, (D.6)

where we have utilized the fact that 〈âkε(0)〉 = 0, and assumed that atomic motion is classical

[229, 230]. Changing
∑

k = V
(2π)3

∫
dΩ dk k2, and applying rotating wave approximation, we have

db̂j
dt

= −iωab̂j + i
∑
l 6=j

ŝj b̂l(gjl − ifjl)−
Γ

2
b̂j , (D.7)

with f(0) = Γ, and

g(r) = −3Γ

4

[
z1(θ)

cosk0r

k0r
+ z2(θ)

(
cosk0r

k3
0r

3
+

sink0r

k2
0r

2

)]
,

(D.8)

f(r) =
3Γ

4

[
z1(θ)

sink0r

k0r
+ z2(θ)

(
sink0r

k3
0r

3
− cosk0r

k2
0r

2

)]
,

(D.9)
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where z1(θ) = sin2θ, and z2(θ) = (3cos2θ − 1). These expressions can also be obtained from Eq.

(2.23)∼ Eq. (2.22) by keeping only a single α component. We further assume that multi-atom

correlations can be factorized, 〈ŝj b̂l〉 ≈ 〈ŝj〉〈b̂l〉, so that the atomic coherence evolves as

dbj
dt

= −iωabj + i
∑
l 6=j

sjbl(gjl − ifjl)−
Γ

2
bj , (D.10)

where O = 〈Ô〉 for any atomic operator Ô. It is coupled to sj , the equation of which can be derived

in a similar way and is given by

dsj
dt

= −Γsj − 2i
∑
l 6=j

(gjl − ifjl)b∗jbl + 2i
∑
l 6=j

(gjl + ifjl)b
∗
l bj .

(D.11)

If we consider very low external driving field and sj ≈ −1, Eq. (D.10) is decoupled from sj and

can be reduced to the form of Eq. (6.2). For the momentum,

dp̂j
dt

= −∇Ĥ

= −
∑
k,ε

gk(dj · εk)(ikeik·rj âkεb̂
†
j − ike−ik·rj â

†
kεb̂j

+ikeik·rj âkεb̂j − ike−ik·rj â†kεb̂
†
j). (D.12)

After substituting Eq. (D.5), taking the quantum average and performing a similar integration

procedure as above, we obtain

dpj
dt

=
∑
l 6=j

[gjl(bjb
∗
l + H.c.)− ifjl(bjb∗l −H.c.)], (D.13)

with gjl = −∇gjl and fjl = −∇fjl. As the dispersive force gjl is a steep function of rjl, it

dominates at short distance, and atoms are drastically accelerated/decelerated. Both the dispersive

and dissipative forces are anisotropic and couple motion along different directions.

Due to the presence of spontaneous emission and radiative interactions, the atomic momen-

tum also diffuses over time, which can be described by including classical noise dξαi in the equation

of motion for pαi . The components of these noises are correlated, and characterized by the diffusion



134

matrix

E[dξαi (t)dξβi (t′)] = δα,β
2− δα,z

10
~2k2

0Γ(si + 1)δ(t− t′),

(D.14)

E[dξαi (t)dξβj (t′)] = −2~2k2
0∇α∇βf(rij)<[b∗i bj ]δ(t− t′),

(D.15)

where E[·] denotes the expectation value.

The momentum diffusion matrix can be found from

Djl =
d〈p̂jp̂l〉
dt

− 〈pj〉
d〈pl〉
dt
− d〈pj〉

dt
〈pl〉 (D.16)

=
∑
k1,ε1

∑
k2,ε2

gk1gk2(dj · ε1)(dl · ε2)(ik1e
ik1·rj âk1ε1 b̂

†
j

−ik1e
−ik1·rj â†k1ε1

b̂j

+ik1e
ik1·rj âk1ε1 b̂j − ik1e

−ik1·rj â†k1ε1
b̂†j)

×(ik2e
ik2·rl âk2ε2 b̂

†
l − ik2e

−ik2·rl â†k2ε2
b̂l

+ik2e
ik2·rl âk2ε2 b̂l − ik2e

−ik2·rl â†k2ε2
b̂†l )

= −2~2k2
0∇∇fij<[b∗jbl]. (D.17)

In dense clouds momentum diffusion from radiative interactions can give rise at long times

to significant heating. This heating was reported to be one of the main limiting mechanisms in

laser cooling [42, 230]. At short times, tΓ ∼ 1, with low densities and weak probes, Ω < Γ, the

momentum diffusion is not prominent, and since this is the regime we are interested in this work,

we will ignore momentum diffusion in our calculations presented in the main text.

D.2 Effect of motion on single-atom fluorescence

Here we derive the fluorescence intensity emitted by a weakly driven atom, using a full

quantum approach with motional effect included. We consider the states including at most one

excitation, and label the relevant quantum states by |pα, 0〉 , |pg,kε〉, with α = {e, g}, p the
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momentum of the atom, and k(ε) being the momentum (polarization) of the photon in vacuum

(|pα, 0〉 stands for no photon). For generality we assume here that two counter propagating lasers

are used to drive the atoms, carrying momentum k0 and −k0 respectivelly. The Hamiltonian is 1

Ĥ =
p̂2

2m
+ ~ωab̂†b̂+ ~Ω[cos(k0 · r)(e−iωLtb̂† + H.c.)]

+
∑
k,ε

~ωkâ†kεâk,ε − ~
∑
k,ε

(d · ε̂k)gk[e
ik·râkεb̂

† + H.c.].

(D.18)

The state vector of the system is

|ψ〉 =
∑
α

∫
dp |pα, 0〉Aα0(p, t)e−i(Eα+Ep)t/~

+
∑
k,ε

∫
dp |pg,kε〉Bgkε(p, t)e−i(Eg+Ep+~ωk)t/~,

(D.19)

where Eα = ωaδα,e, Ep = p2

2m , |Aα0(p, t)|2 represents the population in the state α possessing

momentum p, and Bgkε(p, t) is the amplitude of having a photon k with polarization ε. The state

1 Note: The counterrotating terms such as âkεb̂ have been dropped because the relevant states are restricted to
including at most one excitation.
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of the system evolves according to

i
dAg0(p, t)

dt
= ΩAe0(p + k, t)ei(ωL−ωa)te−iEp+k0,p

t/~

+ΩAe0(p− k, t)ei(ωL−ωa)te−iEp−k0,p
t/~,

(D.20)

i
dAe0(p, t)

dt
= −

∑
k,ε

(d · ε̂k)gkBgkε(p− k, t)

×e−i(ωk−ωa)te−iEp−k,pt/~

+ΩAg0(p− k, t)e−i(ωL−ωa)te−iEp−k0,p
t/~

+ΩAg0(p + k, t)e−i(ωL−ωa)te−iEp+k0,p
t/~,

(D.21)

i
dBgkε(p, t)

dt
= Bgkε(p, t)− (d · ε̂k)gkAe0(p + k, t)

×ei(ωk−ωa)te−iEp+k,pt/~, (D.22)

where Ep1,p2 =
p2

1−p2
2

2m . The first term in Eq. (D.21) describes the effect of vacuum photons, which

according to Wigner-Weisskopf approach leads to the spontaneous decay with rate Γ, and can be

rewritten as [137]

i
dAe0(p, t)

dt
= −iΓ

2
Ae0(p, t) + ΩAg0(p− k, t)

×e−i(ωL−ωa)te−iEp−k0,p
t/~

+ΩAg0(p + k, t)e−i(ωL−ωa)te−iEp+k0,p
t/~.

(D.23)

Consider the initial condition Bgkε(p, 0) = 0, Ag0 = δ(p− p0), where p0 is the initial momentum

of the atom. The steady state solution is

Ae0(p,∞) =
Ω[δ(p0 − p + k0) + δ(p0 − p− k0)]

∆L + Ep0,p + iΓ
2

,

(D.24)
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with ∆L = ωL − ωa. Thus the atomic excitation Ae =
∫
dp|Ae0(p,∞)|2 indicates two Lorentzian

with FWHM=Γ and centered at ωr± k0·p0

m . The photon emission rate along a given direction ks is

Iks =
V ~c
(2π)3

∫
dk k3

∑
ε

∫
dp lim

t→∞
|Bgkε(p, t)|2

t
,

(D.25)

with k = kk̂s. We consider the transverse intensity case where, k·k0 = 0, and for atomic transitions

ωr, p0 · k0/m� ωL, then

Iks ≈
ω4
L

c3

d2Ω2

8π2ε0
[

1

(∆− ωr + k0·p0

m )2 + Γ2

4

+
1

(∆− ωr − k0·p0

m )2 + Γ2

4

]. (D.26)

The emitted light intensity exhibits the same profile as the atomic excitation Ae.

As indicated by the above expression, motion modifies the emitted light intensity by adding

two natural corrections: a Doppler shift ∝ k0·p0

m , modifying the effective laser detuning, and a

velocity independent recoil shift, ωr, which physically accounts for the fact that to compensate

for the energy imparted to the atom via photon recoil, the incident laser needs to have a higher

frequency to be resonant with the atomic transition.



Appendix E

Calculation of Weyl dispersion

E.1 Dispersion near Weyl nodes

We define the quasiparticle dispersion as the poles of the retarded Green’s function averaged

with respect to quenched disorder.

While long-wave quasiparticles (k→ 0) are insensitive to the details of the lattice potential,

their effective Hamiltonian preserves rotation and inversion symmetries, and in the absence of

magnetic field– time-reversal symmetry, with the generic form of the Hamiltonian given by Eq. (7.1)

and with the vector ω parallel to the magnetic field.

We assume the existence of excitations with momentum J = 1 and focus on the respective

manifold of states in what follows. The dispersion of such excitations has three branches for each

momentum k.

For momenta k parallel to ω the respective excitations have momentum projections Jz = 0

and Jz = ±1 on the direction ω. The branch with Jz = 0 intersects the branch with Jz = ±1 at

momenta K ‖ ω such that

F (|K|,K2, 2)± ω = F (|K|, 0, 2), (E.1)

where we used that Ĵ2 = J(J + 1) = 2 for the states under consideration.

The quasiparticle dispersion near the nodes can be found by expanding the Hamiltonian

in small momenta p = k − K. Momentum deviation from a node along the z axis leads to the

splitting F
[
K + pz, (K + pz)

2, 2
]
± ω − F [K + pz, 0, 2] between the intersecting branches. Using
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that [(K+p) · Ĵ]2 ≈ K2

2 + K2

2 σ̂z +Kpz +Kpzσ̂z± K√
2
(pxσ̂x +pyσ̂y), with σ̂i being the Pauli matrices

in the space of momentum projections Jz = +1 (Jz = −1) and Jz = 0, we obtain the quasiparticle

Hamiltonian (7.2) with

ζ(p) =
1

2
F
[
K + pz, (K + pz)

2, 2
]
− 1

2
F
[
K,K2, 2

]
+

1

2
F (K + pz, 0, 2)− 1

2
F (K, 0, 2), (E.2)

v⊥ = ± 1√
2
KF (2)(K,K2, 2) (E.3)

v‖ = KF (2)(K,K2, 2)

+
1

2
[F (1)(K,K2, 2)− F (1)(K, 0, 2)] (E.4)

where the upper (lower) sign in Eq. (E.3) applies to the intersection of the Jz = 0 branch with

Jz = +1 (Jz = −1), and F (1) and F (2) are the derivatives of the function F with respect to the

first and the second argument.

E.2 Excitation dispersion in a deep lattice

As particles cannot move from site to site in a deep optical lattice, the quasiparticles are

represented by the angular-momentum degrees of freedom that propagate through the system.

Assuming there is one particle per site and introducing bosonic operators d̂σ†i and d̂σi for creating

and annihilating the particle state |1σ〉i on site i with angular momentum J = 1 and projection σ

and the operators â†i and âi for creating and annihilating the momentum state J = 0 on site i, the
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system Hamiltonian can be rewritten as

Ĥ =
∑
i,j,σ,σ′

〈1σ|i〈00|jĤdip

(
d̂id̂j , rij

)
|00〉i|1σ′〉j d̂σ†i d̂σ

′
j â
†
j âi

+
∑
i,j,σ,σ′

[
〈1σ|i〈1σ′|jĤdip

(
d̂id̂j , rij

)
|00〉i|00〉j d̂σ†i d̂

σ′†
j âj âi

+〈00|i〈00|jĤdip

(
d̂id̂j , rij

)
|1σ〉i|1σ′〉j â†j â

†
i d̂
σ
i d̂

σ′
j

]
−B

∑
iσ

σ d̂σ†i d̂
σ
i âiâ

†
i +BJ

∑
iσ

d̂iσ
†d̂σi

+U
∑
iσ

[
d̂σ†i d̂

σ
i

(
d̂σ†i d̂

σ
i − 1

)
+ â†i âi

(
â†i âi − 1

)
+ d̂σ†i d̂

σ
i â
†
i âi

]
. (E.5)

The first term in the Hamiltonian (E.5) is responsible for moving angular-momentum excitations

from site to site; the angular-momentum state |1σ〉i can be transferred by the dipole-dipole inter-

actions from site i to another state |1σ′〉j on site j that initially was in the J = 0 state. The terms

in the second sum in Eq. (E.5) change pairs of sites i and j from the J = 0 to J = 1 angular-

momentum states or vice versa. The term ∝ B is the Zeeman energy. The term ∝ BJ accounts for

the internal rotation (internal levels) of the particles. The terms ∝ U =∞ in Eq. (E.5) enforce the

hard-core constraints for the bosons created by the operators d̂σ†i and â†i , taking into account that

there is one particle on each site.

In chapter 7 we consider excitations on top of the ground state with all sites (particles) in

the J = 0 state. Exciting the internal degree of freedom of a particle on a site costs the rotation

energy BJ that significantly exceeds all the other energy scales, except U = ∞, including the

matrix elements ∼ |Ĥdip| of hopping of such angular-momentum degrees of freedom between sites

(for instance, for dipolar molecules and alkaline-earth atoms |Ĥdip|/BJ . 10−6). As a result, the

number of sites excited to the J = 1 states is conserved to a good approximation, and the second

sum in Eq. (E.5), that creates or annihilates pairs of J = 1 excitations, can be neglected when

considering the angular-momentum dynamics.

Therefore, the quasiparticles in the system are hard-core bosons that carry angular-momentum

(J = 1) degrees of freedom and hop from site to site as described by the effective Hamiltonian (7.6)-

(7.7) with b̂iσ = d̂σi â
†
i .
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E.3 Details of disorder averaging.

Realistic systems of particles pinned in deep optical lattices are inherently disordered due to

the randomness of the spatial distribution of the particles. Each lattice site hosts either a particle

with probability f or a vacancy with probability 1− f .

For a small concentration of vacancies, excitations in the system are delocalised and their

dispersion is close to that in the disorder-free system but acquires a small finite imaginary part

ImEk due to the scattering on the vacancies.

In order to numerically obtain the quasiparticle spectra in such a disordered system we

diagonalise the Hamiltonian Ĥ = Ĥ0 + V̂ , where Ĥ0 is the excitation Hamiltonian in the clean case

and the operator V̂ models vacancies as sites with infinite potential V (ri) = ∞. We compute the

retarded Green’s function

G(r1σ1, r2σ2, E) =
∑
α

ψ∗ασ1
(r1)ψασ2(r2)

E − Eα + iη
(E.6)

for multiple disorder realisations, where ψα and Eα are the eigenfunctions and eigenenergies for

a particular disorder realisation, σ1 and σ2 label projections of the angular momentum J = 1,

and η is a small positive number introduced to ensure that the disorder-averaged Green’s function

〈G(r1σ1, r2σ2, E)〉dis is a smooth function of its arguments for a given number of disorder reali-

sations. At the same time, η has to be chosen sufficiently small to not affect the results for the

quasiparticle dispersion. The energy E has to be chosen close to the energies of the quasiparticles

of interest.

Disorder averaging restores translational invariance, yielding an averaged Green’s function

that depends only on the coordinate difference r2 − r1. Computing the Fourier transform of the

function 〈G(r1σ1, r2σ2, E)〉dis with respect to r2−r1 and diagonalising it in the angular-momentum

space gives 1/(E −Ekn), where n = 1, 2, 3 labels the dispersion branch for a given k, ReEkn is the

quasiparticle dispersion and −2ImEkn– the scattering rate.

In chapter 7 we perform averaging over 100 disorder realisations on a 10 × 10 × 10 cubic

lattice with periodic boundary conditions for the filling fraction f = 0.93, close to that in the
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recent experiments [126, 221, 92]. The results for the quasiparticle dispersion and scattering rates

are shown in Fig. 7.3c.
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