Spectroscopy of Resonant Intermediate States for Triplet–Triplet Annihilation Upconversion in Crystalline Rubrene: Radical Ions as Sensitizers

Author
Abstract
Photoluminescence upconversion in crystalline rubrene can proceed without an added sensitizer, but the mechanism for this process has not been well-understood. In particular, the species responsible for photon absorption has not been identified to date. To gain insight into the identity of the intermediate state, we measured the near-infrared (NIR) upconversion photoluminescence (UCPL) excitation spectrum of rubrene crystals and found three distinct spectral features. The UCPL yield has a quartic dependence on the laser intensity, implying a four-photon process. On the basis of electronic spectra of radical cations and anions of rubrene, we propose a mechanism in which photoexcited radical anions and cations undergo recombination, forming an excited neutral triplet while conserving spin. The triplets formed this way ultimately undergo triplet–triplet annihilation, resulting in the observed photoluminescence. This mechanism explains the origin of the NIR absorption as well as the four-photon nature of the UCPL process.
Year of Publication
2020
Date Published
2020-08
Journal Title
The Journal of Physical Chemistry Letters
Volume
11
Issue
17
Start Page or Article ID (correct)
7212-7217
Publisher
ISSN Number
1948-7185, 1948-7185
DOI
JILA PI
Related JILA Highlights
Journal Article
JILA Topics
Group Name & Research Topics
Publication Status