Few-cycle laser driven reaction nanoscopy on aerosolized silica nanoparticles

Author
Abstract
Nanoparticles offer unique properties as photocatalysts with large surface areas. Under irradiation with light, the associated near-fields can induce, enhance, and control molecular adsorbate reactions on the nanoscale. So far, however, there is no simple method available to spatially resolve the near-field induced reaction yield on the surface of nanoparticles. Here we close this gap by introducing reaction nanoscopy based on three-dimensional momentum-resolved photoionization. The technique is demonstrated for the spatially selective proton generation in few-cycle laser-induced dissociative ionization of ethanol and water on SiO<sub>2</sub> nanoparticles, resolving a pronounced variation across the particle surface. The results are modeled and reproduced qualitatively by electrostatic and quasi-classical mean-field Mie Monte-Carlo (M<sup>3</sup>C) calculations. Reaction nanoscopy is suited for a wide range of isolated nanosystems and can provide spatially resolved ultrafast reaction dynamics on nanoparticles, clusters, and droplets.
Year of Publication
2019
Journal
Nature Communications
Volume
10
Date Published
2019-10
URL
https://www.nature.com/articles/s41467-019-12580-0$\#$Abs1
DOI
10.1038/s41467-019-12580-0
JILA PI
Journal Article