Infrared nano-spectroscopy of ferroelastic domain walls in hybrid improper ferroelectric Ca_3 Ti_2 O_7

Author
Abstract
Ferroic materials are well known to exhibit heterogeneity in the form of domain walls. Understanding the properties of these boundaries is crucial for controlling functionality with external stimuli and for realizing their potential for ultra-low power memory and logic devices as well as novel computing architectures. In this work, we employ synchrotron-based near-field infrared nano-spectroscopy to reveal the vibrational properties of ferroelastic (90<sup>o</sup> ferroelectric) domain walls in the hybrid improper ferroelectric Ca<sub>3</sub>Ti<sub>2</sub>O<sub>7</sub>. By locally mapping the Ti-O stretching and Ti-O-Ti bending modes, we reveal how structural order parameters rotate across a wall. Thus, we link observed near-field amplitude changes to underlying structural modulations and test ferroelectric switching models against real space measurements of local structure. This initiative opens the door to broadband infrared nano-imaging of heterogeneity in ferroics.
Year of Publication
2019
Journal
Nature Communications
Volume
10
Date Published
2019-11
URL
https://www.nature.com/articles/s41467-019-13066-9$\#$Abs1
DOI
10.1038/s41467-019-13066-9
JILA PI
Journal Article