Controlling Dipolar Exchange Interactions in a Dense 3D Array of Large Spin Fermions

Author
Abstract
Dipolar interactions are ubiquitous in nature and rule the behavior of a broad range of systems spanning from energy transfer in biological systems to quantum magnetism. Here, we study magnetization-conserving dipolar induced spin-exchange dynamics in dense arrays of fermionic erbium atoms confined in a deep three-dimensional lattice. Harnessing the special atomic properties of erbium, we demonstrate control over the spin dynamics by tuning the dipole orientation and changing the initial spin state within the large 20 spin hyperfine manifold. Furthermore, we demonstrate the capability to quickly turn on and off the dipolar exchange dynamics via optical control. The experimental observations are in excellent quantitative agreement with numerical calculations based on discrete phase-space methods, which capture entanglement and beyond-mean field effects. Our experiment sets the stage for future explorations of rich magnetic behaviors in long-range interacting dipoles, including exotic phases of matter and applications for quantum information processing.
Year of Publication
2020
Journal
Physical Review Research
Volume
2
Number of Pages
023050
Date Published
2020-04
URL
https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.023050
DOI
10.1103/PhysRevResearch.2.023050
JILA PI
Associated Institutes
Journal Article