Laser cooling atoms to indistinguishability: Atomic Hong-Ou-Mandel interference and entanglement through spin exchange

Author
Abstract
<p>In this thesis, I describe the development of and scientific results from a new platform for\&nbsp;<span style="line-height: 1.6em;">creating ultracold atoms via single-atom control. We employ Raman-sideband cooling to isolated\&nbsp;</span><span style="line-height: 1.6em;">bosonic <sup>87</sup>Rb atoms confined within sub-micron optical tweezers, yielding single particle three dimensional\&nbsp;</span><span style="line-height: 1.6em;">ground-state fractions of 90\%. We create multiple, independent, mobile optical tweezers,\&nbsp;</span><span style="line-height: 1.6em;">which simultaneously allows multi-particle studies with single-atom microscopy and highly\&nbsp;</span><span style="line-height: 1.6em;">tunable length-scales. We employ this toolset in both of the main experiments discussed in this\&nbsp;</span><span style="line-height: 1.6em;">thesis. In one experiment, we observe Hong-Ou-Mandel interference of two bosonic atoms, each of\&nbsp;</span><span style="line-height: 1.6em;">which is independently prepared in spatially separated optical tweezers. The interference we observe\&nbsp;</span><span style="line-height: 1.6em;">is a direct consequence of the purity of the single particle quantum states produced, and the\&nbsp;</span><span style="line-height: 1.6em;">indistinguishability of the atoms. In a second experiment, we introduce a spin-degree of freedom\&nbsp;</span><span style="line-height: 1.6em;">and exploit spin-exchange dynamics, driven by the quantum-statistics of the particles, to create a\&nbsp;</span><span style="line-height: 1.6em;">spin-entangled pair of spatially separated atoms</span></p>
Year of Publication
2015
Degree
Ph.D.
Number of Pages
266
Date Published
11-2015
University
University of Colorado Boulder
City
Boulder, CO
Advisors - JILA Fellows
PDF