Short-time expansion of Heisenberg operators in open collective quantum spin systems

Author
Abstract
We present an efficient method to compute short-time expectation values in large collective spin systems with typical forms of Markovian decoherence. Our method is based on a Taylor expansion of a formal solution to the equations of motion for Heisenberg operators. This expansion can be truncated at finite order to obtain virtually exact results at short times that are relevant for metrological applications such as spin squeezing. In order to evaluate the expansion for Heisenberg operators, we compute the relevant structure constants of a collective spin operator algebra. We demonstrate the utility of our method by computing spin squeezing, two-time correlation functions, and out-of-time-ordered correlators for 10<sup>4</sup> spins in strong-decoherence regimes that are otherwise inaccessible via existing numerical methods. Our method can be straightforwardly generalized to the case of a collective spin coupled to bosonic modes, relevant for trapped ion and cavity QED experiments, and may be used to investigate short-time signatures of quantum chaos and information scrambling.
Year of Publication
2020
Journal
Physical Review A
Volume
101
Number of Pages
023601
Date Published
2020-02
Publisher
URL
https://link.aps.org/doi/10.1103/PhysRevA.101.023601
DOI
10.1103/PhysRevA.101.023601
JILA PI
Associated Institutes
Journal Article