Research Highlights

Precision Measurement | Quantum Information Science & Technology
To Measure or Not to Measure, but Dynamically Evolve—That is the Question
A scale with two different cavities on it
Published:

In the world of quantum technology, measuring with extreme accuracy is key.  Despite impressive developments, state-of-the-art matter-wave interferometers and clocks still operate with collections of independent atoms, and the fundamental laws of quantum mechanics limit their precision.  

One way to get around this fundamental quantum fuzziness is to entangle the atoms or make them talk so that one cannot independently describe their quantum states. In this case, it is possible to create a situation where the quantum noise of one atom in a sensor can be partially canceled by the quantum noise of another atom such that the total noise is quieter than one would expect for independent atoms. This type of entangled state is called a “squeezed state,” which can be visualized as if one had made a clock hand narrower to tell the time more precisely, a precision that comes at the expense of making the fuzziness along the clock hand worse.  However, preparing spin-squeezed states is no easy feat. 

Up to now, there have been two leading ways to generate squeezed states, using atoms that interact with light. One way, unitary evolution, is by transforming an initially uncorrelated (not entangled) state into a spin-squeezed state via dynamical evolution via a specific type of unitary interaction. One can imagine the initially uncorrelated state as a round piece of dough where your hand slowly squeezes the dough in one direction while making the other direction wider. 

The other way is to perform quantum nondemolition measurements (QND) that allow one to pre-measure the quantum noise and subtract it from the final measurement outcome.  The QND approach has currently realized the largest amounts of observed squeezing between the two methods, but it is not clear which protocol is actually optimal, given fundamental experimental constraints, or even if it would be better to use both protocols at the same time. 

This is why JILA and NIST Fellows and University of Colorado Boulder Physics professors Ana Maria Rey and James K. Thompson and their teams wanted to guide the community on which protocol is best to use under fundamental and realistic experimental conditions. Their results, published in Physical Review Research, revealed that when measurement efficiency is greater than 19%, the QND measurement protocol outperformed unitary dynamical evolution. This finding can have big implications for quantum metrology.

PI: Ana Maria Rey | PI: James Thompson
Read More
Quantum Information Science & Technology
A 3D Ion Magnet, the New Experimental Frontier for Quantum Information Processing
Bilayer crystals of trapped ions can be realized in devices called Penning traps, and lasers (shown in red and blue) can be used to manipulate the ions and engineer interactions between them. Such crystals may open new avenues for quantum technology applications.
Published:

Many quantum devices, from quantum sensors to quantum computers, use ions or charged atoms trapped with electric and magnetic fields as a hardware platform to process information. 

However, current trapped-ion systems face important challenges. Most experiments are limited to one-dimensional chains or two-dimensional planes of ions, which constrain the scalability and functionality of quantum devices. Scientists have long dreamed of stacking these ions into three-dimensional structures, but this has been very difficult because it’s hard to keep the ions stable and well-controlled when arranged in more complex ways.

To address these challenges, an international collaboration of physicists from India, Austria, and the USA—including JILA and NIST Fellow Ana Maria Rey, along with NIST scientists Allison Carter and John Bollinger—proposed that tweaking the electric fields that trap the ions can create stable, multilayered structures, opening up exciting new possibilities for future quantum technologies. The researchers published their findings in Physical Review X.
 

PI: Ana Maria Rey
Read More
Precision Measurement | Quantum Information Science & Technology
Twisting and Binding Matter Waves with Photons in a Cavity
Atoms inside of an optical cavity exchange their momentum states by "playing catch" with photons. As the atoms absorb photons from an applied laser, the whole cloud of atoms recoil rather than the individual atoms.
Published:

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in the opposite direction, making it difficult to measure the position and momentum of the atom precisely. This recoil can have big implications for quantum sensing, which detects minute changes in parameters, for example, using changes in gravitational waves to determine the shape of the Earth or even detect dark matter. 

In a new paper published in Science, JILA and NIST Fellows Ana Maria Rey and James Thompson, JILA Fellow Murray Holland, and their teams proposed a way to overcome this atomic recoil by demonstrating a new type of atomic interaction called momentum-exchange interaction, where atoms exchanged their momentums by exchanging corresponding photons. 

Using a cavity—an enclosed space composed of mirrors—the researchers observed that the atomic recoil was dampened by atoms exchanging energy states within the confined space. This process created a collective absorption of energy and dispersed the recoil among the entire population of particles.

PI: Ana Maria Rey | PI: James Thompson | PI: Murray Holland
Read More
Precision Measurement | Quantum Information Science & Technology
Squeezing in the Dark of a Superradiant Roller Coaster
Multilevel atoms on a superradiance potential "rollercoaster" inside an optical cavity. The system can be tuned to generate squeezing in a dark state where it will be immune to superradiance.
Published:

While atomic clocks are already the most precise timekeeping devices in the universe, physicists are working hard to improve their accuracy even further. One way is by leveraging spin-squeezed states in clock atoms. Spin-squeezed states are entangled states in which particles in the system conspire to cancel their intrinsic quantum noise. These states, therefore, offer great opportunities for quantum-enhanced metrology since they allow for more precise measurements. Yet, spin-squeezed states in the desired optical transitions with little outside noise have been hard to prepare and maintain. 

One particular way to generate a spin-squeezed state, or squeezing, is by placing the clock atoms into an optical cavity, a set of mirrors where light can bounce back and forth many times. In the cavity, atoms can synchronize their photon emissions and emit a burst of light far brighter than from any one atom alone, a phenomenon referred to as superradiance. Depending on how superradiance is used, it can lead to entanglement, or alternatively, it can instead disrupt the desired quantum state. 

In a prior study, done in a collaboration between JILA and NIST Fellows, Ana Maria Rey and James Thompson, the researchers discovered that multilevel atoms (with more than two internal energy states) offer unique opportunities to harness superradiant emission by instead inducing the atoms to cancel each other’s emissions and remain dark. 

Now, reported in a pair of new papers published in Physical Review Letters and Physical Review A, Rey and her team discovered a method for how to not only create dark states in a cavity, but more importantly, make these states spin squeezed. Their findings could open remarkable opportunities for generating entangled clocks, which could push the frontier of quantum metrology in a fascinating way. 

PI: Ana Maria Rey
Read More
Precision Measurement | Quantum Information Science & Technology
B-C-S—Easy as I, II, III: Unveiling Dynamic Superconductivity
Researchers observed the dynamic phases of BCS superconductor interactions in a Cavity QED by measuring the light leakage from the cavity.
Published:

In physics, scientists have been fascinated by the mysterious behavior of superconductors—materials that can conduct electricity with zero resistance when cooled to extremely low temperatures. Within these superconducting systems, electrons team up in “Cooper pairs” because they're attracted to each other due to vibrations in the material called phonons. 

As a thermodynamic phase of matter, superconductors typically exist in an equilibrium state. But recently, researchers at JILA became interested in kicking these materials into excited states and exploring the ensuing dynamics. As reported in a new Nature paper, the theory and experiment teams of JILA and NIST Fellows Ana Maria Rey and James K. Thompson, in collaboration with Prof. Robert Lewis-Swan at the University of Oklahoma, simulated superconductivity under such excited conditions using an atom-cavity system. 

PI: Ana Maria Rey | PI: James Thompson
Read More
Precision Measurement | Quantum Information Science & Technology
New Spin-Squeezing Techniques Let Atoms Work Together for Better Quantum Measurements
Higher accuracy atomic clocks, such as the “tweezer clock” depicted here, could result from linking or “entangling” atoms in a new way through a method known as “spin squeezing,” in which one property of an atom is measured more precisely than is usually allowed in quantum mechanics by decreasing the precision in which a complementary property is measured.
Published:

Opening new possibilities for quantum sensors, atomic clocks and tests of fundamental physics, JILA researchers have developed new ways of “entangling” or interlinking the properties of large numbers of particles. In the process they have devised ways to measure large groups of atoms more accurately even in disruptive, noisy environments. 

The new techniques are described in a pair of papers published in Nature. JILA is a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder. 

PI: Adam Kaufman | PI: Ana Maria Rey
Read More
Precision Measurement | Quantum Information Science & Technology
Entangled Pairs Get Sensitive Very Fast
A representation of bosonic pair creation, which creates an entangled state between atoms
Published:

The best clock in the world has no hands, no pendulum, no face or digital display. It is made of ultra-cold atoms trapped by light.  This atomic clock is so precise that, had it begun ticking when Earth formed billions of years ago, it would not yet have gained or lost a second. Nonetheless, this incredible clock, and all atomic clocks, operate with collections of independent atoms, and as a result, their precision is limited by the fundamental laws of quantum mechanics.  One way to get around this fundamental quantum imprecision is to entangle the atoms, or make them talk, in such a way that one cannot describe the individual atoms’ quantum states independently of one another. In this case it is possible to create the situation where the quantum noise of one atom in the clock can be partially canceled by the quantum noise of another atom such that the total noise is quieter than one would expect for independent atoms. One type of entangled state is called a “squeezed state”, which can be visualized as if one had shaped the quantum noise in a way that is narrower in one direction at the expense of making the fuzziness in the adjacent direction worse.  Squeezed states have been realized in several labs around the world at groundbreaking precision levels recorded by several physics institutes, including  at JILA in Boulder, Colorado.  However, squeezing is experimentally challenging to create and there is a need for a variety of “flavors” of squeezing for different types of quantum sensing tasks.

A new approach recently described in Physical Review Letters explores a new way to generate squeezing that is exponentially faster than previous experiments and generates a new flavor of entanglement:  two-mode squeezing—a type of entanglement that is thought to be used for improving the best atomic clocks and for sensing how gravity changes the flow of time. This promising new approach was developed by a collaboration of JILA and NIST Fellows Ana Maria Rey and James K. Thompson, and their team members, along with Bhuvanesh Sundar, a former postdoctoral researcher at JILA now at Rigetti Computing, and former JILA research associate Dr. Robert Lewis-Swan, now an Assistant Professor at the University of Oklahoma.

PI: Ana Maria Rey | PI: James Thompson
Read More
Precision Measurement | Quantum Information Science & Technology
Using Ion Crystals to Simulate Superconductors
A respresentation of the dynamics within the superconducting system
Published:

When a superconducting material is cooled down below a critical temperature, something seemingly magical happens: its electrical resistivity drops abruptly to zero! Initially, before 1911, this was thought to be impossible, given that electrons, which are the particles that carry electric current, typically scatter from impurities and imperfections of a crystal lattice used in conducting materials.  Moreover, because electrons are negatively charged particles, they typically repel each other. Yet, behind the “magic” of superconductors is the fact that two electrons, in a periodic crystalline array of atoms (a web of lasers), can attract positive charges in the lattice, whose subsequent deformation mediates an attractive interaction between the electrons. This attraction favors electrons with opposite momenta to bind together, forming ‘Cooper pairs’. These pairs can coalesce into a coherent macroscopic quantum state of matter, in which they remain paired while flowing through the crystal without any resistance. Beyond their immense practical applications, superconductors also offer a promising testbed to study the fundamental physics of matter held far away from equilibrium.

In a conventional superconductor (‘s-wave’ superconductor), the two electrons in a Cooper pair must have opposite spins. But there are unconventional superconductors with p-wave symmetry, in which electrons of the same spin pair up.  This pairing is penalized by an energy barrier and in order to overcome the barrier and pair up, electrons need to carry a non-zero angular momentum, which means that they need to spin around each other. The net angular momentum of the Cooper pairs can give rise to rich quantum behaviors and phases of matter that are intensively sought in real materials and cold atoms, but have, so far, remained elusive.  In particular, the dynamics of p-wave superconductors taken away from equilibrium is predicted to exhibit a variety of temporal behaviors, some of which possess interesting quantum dynamics. Observing these ‘dynamical phases’ in the lab would provide a window into the nature of non-equilibrium phases of matter and some of their properties, and potentially new p-wave superconductors. In cold gases, one of the biggest challenges that has prevented researchers from observing p-wave physics is three-body losses in energy that emerge when weak p-wave interactions are enhanced via external electromagnetic fields. However, to date, liquid 3He remains the only well-established laboratory example of a p-wave superconductor.

To overcome these challenges, JILA and NIST Fellow Ana Maria Rey collaborated with NIST (National Institute of Standards and Technology) Ion Storage Group leader John Bollinger, and researchers at the University of Innsbruck, Rutgers University and the University of Colorado Boulder, to design a trapped-ion simulator for 2D p-wave superconductors. Their work paves a way for clean observations of the predicted non-equilibrium dynamics in future experiments using the trapped-ion simulator, or Penning trap. The researchers published their findings in PRX Quantum.

PI: Ana Maria Rey
Read More
Precision Measurement | Quantum Information Science & Technology
A Quantum Video Reel
An artistic film strip depicting the process of creating time-of-flight imaging
Published:

When it comes to creating ever more intriguing quantum systems, a constant need is finding new ways to observe them in a wide range of physical scenarios.  JILA Fellow Cindy Regal and JILA and NIST Fellow Ana Maria Rey have teamed up with Oriol Romero-Isart, a professor at the University of Innsbruck and IQOQI (Institute for Quantum Optics and Quantum Information) to show that a trapped particle in the form of an atom readily reveals its full quantum state with quite simple ingredients, opening up opportunities for studies of the quantum state of ever larger particles.

PI: Cindy Regal | PI: Ana Maria Rey
Read More
Atomic & Molecular Physics | Quantum Information Science & Technology
Atoms do the Twist
A rendering of the indifferent interactions of p-waves based on their angular momentum
Published:

At ultra-cold temperatures, quantum mechanics dictate how particles bump into each other. The collisions depend both on the quantum statistics of the colliding partners (their location within the medium) and on their collisional energy and angular momentum.  The angular momentum of the particles creates an energy barrier, a field of energy that prevents two molecules from interacting, and which can also affect particle dynamics in the quantum realm. The two main types of interactions at the quantum level are s-waves and p-waves. S-wave types of collisions happen naturally between fermions when they exist together in two different internal states and happen with zero angular momenta, which creates a low energy barrier. That means that atoms can collide “head-on.” S-wave collisions have been very well studied and characterized.  However, quantum statistics prevents identical fermions (those having the same internal state) to collide via s-wave interactions, instead forcing them to interact via the so-called “p-wave” channel. 

However, quantum statistics prevents identical fermions (having the same internal state) to collide via s-wave interactions, instead forcing them to interact via the so-called “p-wave” channel.  In contrast with s-wave interactions, p-wave interactions are penalized by the aforementioned energy barrier.In order to collide, particles need to carry a non-zero angular momentum in order to overcome that barrier—they need to spin around each other, like a pair of dancers. The net angular momentum of the partners can give rise to rich quantum behaviors and phases of matter that have been intensively sought in real materials and cold atoms, but which have not yet been found. Besides the energy barrier, the dynamics of three-body recombination, which involves interactions when three atoms are present rather than two, can make it complicated to study p-wave interactions in an isolated space. To overcome these problems, and to measure coherent p-wave interactions between two particles for the first time, JILA and NIST Fellow Ana Maria Rey and her group, together with JILA theorist Jose D’Incao, collaborated with the University of Toronto experimentalist team led by Joseph Thywissen. They devised a method to isolate pairs of atoms in an optical lattice, a web of laser light that helps isolate and control particle interactions, then gave the particles the necessary angular momentum, or twist, for the atoms to collide via p-wave using specific laser beam frequencies. This resulted in the first observation of p-wave interactions in an experiment. The researchers have published their findings in the journal Nature.

PI: Ana Maria Rey
Read More
Precision Measurement | Quantum Information Science & Technology
A Magic Balance in Optical Lattice Clocks
Local interactions in the same lattice pull clock frequency negative while interactions between atoms on neighboring lattice sites pull clock frequency positive. By adjusting the atomic confinement, or tightness, of the lattice, researchers can balance these two counteracting forces to increase clock sensitivity.
Published:

Atomic clocks are essential in building a precise time standard for the world, which is a big focus for researchers at JILA. JILA and NIST Fellow Jun Ye, in particular, has studied atomic clocks for two decades, looking into ways to increase their sensitivity and accuracy. In a new paper published in Science Advances, Ye and his team collaborated with JILA and NIST Fellow Ana Maria Rey and her team to engineer a new design of clock, which demonstrated better theoretical understanding and experimental control of atomic interactions, leading to a breakthrough in the precision achievable in state-of-the-art optical atomic clocks.

PI: Ana Maria Rey | PI: Jun Ye
Read More
Quantum Information Science & Technology
Clearing Quantum Traffic Jams under the SU(n) of Symmetric Collisions
An artistic rendering of the two planes of the atom's movement, with the real being a 1D lattice and the synthetic referring to the nuclear spin of the atom
Published:

Of all the atoms that quantum physicists study, alkaline atoms hold a special place due to their unique structure. Found in the second column of the periodic table, these atoms have two outer electrons, allowing the atoms to interact with one another in intriguing ways. “They have received a lot of attention in recent years among the physics community because of two reasons,” explained JILA and NIST Fellow Ana Maria Rey. “One is that they have a unique atomic structure, which makes them ideal for atomic clocks. This is because they have a long-lived electronic excited state that can live longer than 100 seconds. The second is that their electronic and nuclear spin degrees of freedom are highly decoupled and therefore the nuclear spins do not participate in the atomic collisions.”

Like planets orbiting the sun while rotating, an atom's electrons orbit the nucleus while spinning. The nucleus itself also spins, and this spin can be linked, or “coupled” to the electrons' spins. If the nuclear spin is coupled, it (indirectly) participates in collisions with other atoms. If it is not coupled (decoupled), the nuclear spin is uninvolved in these collisions. For decoupled nuclei, their properties give rise to a unique symmetry called SU(n) symmetry, where the strength of the interactions between the atoms is uninfluenced by what nuclear spins are involved in the collisions. “Here n corresponds to the number of nuclear spin states,” Rey added. “In an alkaline earth atom like strontium, it can be up to 10.” In a new paper published in PRX Quantum, Rey and her team of researchers proposed a new method for seeing the quantum effects enabled by SU(n) symmetry in current experimental conditions, something that has been historically challenging for physicists.

PI: Ana Maria Rey
Read More
Quantum Information Science & Technology
A Look at Colorado's Quantum Revolution
Child wears a helmet made up of more than 100 OPM sensors.
Published:

More than 400 years later, scientists are in the midst of an equally-important revolution. They’re diving into a previously-hidden realm—far wilder than anything van Leeuwenhoek, known as the “father of microbiology,” could have imagined. Some researchers, like physicists Margaret Murnane and Henry Kapteyn, are exploring this world of even tinier things with microscopes that are many times more precise than the Dutch scientist’s. Others, like Jun Ye, are using lasers to cool clouds of atoms to just a millionth of a degree above absolute zero with the goal of collecting better measurements of natural phenomena. 

PI: Jun Ye | PI: Cindy Regal | PI: Margaret Murnane | PI: Henry Kapteyn | PI: Ana Maria Rey
Read More
Precision Measurement | Quantum Information Science & Technology
An Atomic Game of Duck, Duck, Goose
Selected atoms (green) within doubly occupied sites of a 2D "Fermi Sea" are excited by a polarized laser pulse. Pauli blocking prevents decay of the excited atoms (red) as they can only decay into unoccupied sites (black).
Published:

Physics has always been a science of rules. In many situations, these rules lead to clear and simple theoretical predictions which, nevertheless, are hard to observe in actual experimental settings where other confounding effects may obscure the desired phenomena. For JILA and NIST Fellows Ana Maria Rey and Jun Ye, one type of phenomena they are especially interested in observing are the interactions between light and atoms, especially those at the heart of the decay of an atom prepared in the excited state. “If you have an atom in the excited state, the atom will eventually decay to the ground state while emitting a photon,” explained Rey. “This process is called spontaneous emission.” The spontaneous emission rate can be manipulated by scientists, making it longer or shorter, depending on the experimental conditions. Many years ago it was predicted that one way to suppress or slow down spontaneous emission was by applying a special type of statistics known as Fermi statistics which prevents two identical fermions from being in the same quantum state, known as the Pauli Exclusion Principle

This principle is similar to a game of Duck, Duck, Goose, where two individuals fight over an open spot in a circle in order to avoid being “it.” Like children in this game, the atoms must find an empty quantum state to decay into. If they cannot find an empty state, interesting things begin to happen. “If an excited atom wants to decay, but the ground state is already filled, then the decay is “Pauli blocked” and the atom will stay in the excited state longer, or even forever,” Rey said. Nevertheless, the experimental observation of this effect happened to be challenging.  It was not until last year  that the Ye group observed Pauli blocking of radiation for the first time indirectly by measuring the light scattered by the atoms—but a direct observation of Pauli blocking by measuring  the lifetime of atoms in the steady state was lacking. More recently, Ye’s and Rey’s groups collaborated in a joint study, and were able to find an appropriate experimental setting where they were able to observe Pauli blocking of spontaneous emission by direct measurements of the excited state population. The results have been published in the journal Physical Review Letters. 

PI: Jun Ye | PI: Ana Maria Rey
Read More
Quantum Information Science & Technology
JILA and Cubit Partner with Key Quantum Companies for an Engaging Panel
Panelists from left to right: Ana Maria Rey (JILA and NIST), Judith Olson (ColdQuanta), Johanna Zultak (Maybell Quantum), Star Fassler (Vescent), Sara Campbell (Quantinuum), and moderator Brittany Mazin (ColdQuanta)
Published:

Colorado has a reputation for being a quantum ecosystem hotspot and a recent panel discussion further bolstered this image. It was hosted by JILA, a world-leading physics institute created by a partnership between the University of Colorado Boulder and NIST; and the CUbit Quantum Initiative, a CU Boulder research center. The panel, titled "Women in Quantum: What Does It Take," brought in individuals from both quantum research and the quantum industry. With panelists from some of the biggest names in the quantum industry, including ColdQuanta, Maybell Quantum, Quantinuum, and Vescent, the discussions about the industry itself were relevant and engaging.

PI: Ana Maria Rey
Read More
Atomic & Molecular Physics | Precision Measurement | Quantum Information Science & Technology
Running in a Quantum Corn Maze and Getting Stuck in the Dark
Comparison of 2-level and 6-level atom decay paths. For 6-level systems, each state can potentially decay into several states and some of them might be dark due to destructive interference.
Published:

Light is emitted when an atom decays from an excited state to a lower energy ground state, with the emitted photon carrying away the energy.  The spontaneous emission of light is a fundamental process that originates from the interaction between matter and the  modes of the electromagnetic field—the background “hiss” of the universe that is all around us. However, spontaneous emission of light can limit the utility of atomic excited states for a wide array of scientific and technological applications, from probing the nature of the universe to inertial navigation. Understanding ways to alter or even engineer spontaneous emission has been an intriguing topic in science.  JILA Fellows Ana Maria Rey and James Thompson study ways to control light emission by placing atoms in an optical cavity, a resonator made of two mirrors between which light can bounce back and forth many times. Together, with JILA postdoc and first author Asier Piñeiro Orioli, they have predicted that when an array of multi-level atoms is placed in the cavity the atoms can all cooperate and collectively suppress their emission of light into the cavity. These findings were recently published in Physical Review X.

PI: Ana Maria Rey | PI: James Thompson
Read More
Precision Measurement | Quantum Information Science & Technology
Electrifying Molecular Interactions
A depiction showing the interaction between ultra cold compressed 2D gas layers of KRb molecules
Published:

Worldwide, many researchers are interested in controlling atomic and molecular interactions. This includes JILA and NIST fellows Jun Ye and Ana Maria Rey, both of whom have spent years researching interacting potassium-rubidium (KRb) molecules, which were originally created in a collaboration between Ye and the late Deborah Jin. In the newest collaboration between the experimental (Ye) and theory (Rey) groups, the researchers have developed a new way to control two-dimensional gaseous layers of molecules, publishing their exciting new results in the journal Science.

PI: Jun Ye | PI: Ana Maria Rey
Read More
Atomic & Molecular Physics | Quantum Information Science & Technology
A Magic Recipe for a Quantum Interferometer
A comparison of two optical cavities, with the left cavity having only localized atoms and no squeezing. In contrast, the right cavity depicts delocalized atoms, squeezing and entanglement.
Published:

Gravimetry, or the measurement of the strength of a gravitational field (or gravitational acceleration), has been of great interest to physicists since the 1600s. One of the most precise ways to measure gravitational acceleration is to use an atom interferometer. There are many different types of atom interferometers but so far all operate using uncorrelated atoms that are not entangled. To build the best one allowed in nature, it requires harnessing the power of quantum entanglement. However, making a quantum interferometer with entangled atoms is challenging. JILA Fellows Ana Maria Rey and James K. Thompson have published a paper in Physical Review Letters that discusses a new protocol that could make entangled quantum interferometers easier to produce and use.

PI: Ana Maria Rey | PI: James Thompson
Read More
Quantum Information Science & Technology
NIST’s Quantum Crystal Could Be a New Dark Matter Sensor
Illustration of a quantum crystal
Published:

Physicists at the National Institute of Standards and Technology (NIST) have linked together, or “entangled,” the mechanical motion and electronic properties of a tiny blue crystal, giving it a quantum edge in measuring electric fields with record sensitivity that may enhance understanding of the universe.

PI: Ana Maria Rey
Read More
Laser Physics | Quantum Information Science & Technology
BCS: Building a Cavity Superconductor
Model of an optical cavity
Published:

The idea of quantum simulation has only become more widely researched in the past few decades. Quantum simulators allow for the study of a quantum system that would be difficult to study easily and quickly in a laboratory or model with a supercomputer. A new paper published in Physical Review Letters, by a collaboration between theorists in the Rey Group and experimentalists in the Thompson laborator,y proposes a way to engineer a quantum simulator of superconductivity that can measure phenomena so far inaccessible in real materials. 

PI: Ana Maria Rey | PI: James Thompson
Read More