Our quantum optics theory group primarily explores light-matter interactions in cold quantum gases, with a focus on quantum sensing, open quantum systems, and applying machine learning to quantum design problems. The group collaborates with experimentalists at JILA to develop quantum metrology platforms that utilize interparticle entanglement to sense with a quantum advantage. In addition, the group is part of NASA’s Quantum Pathways Institute to manufacture space-bound quantum-based instruments to be used for navigation and climate science. A focal point of our group's metrology research is utilizing Lie group symmetries to extend entanglement generation protocols to higher dimensional systems. The group also works on bad-cavity QED systems to help realize a continuous-wave superradiant laser that would have a coherence length stretching from the Earth to the Sun, which would help enable the development of active atomic clocks.