Research Highlights

Atomic & Molecular Physics | Precision Measurement | Quantum Information Science & Technology
A Tale of Two Dipoles
Two different experiments looking at dipolar BEC gases and their dynamics
Published: April 21, 2023

Dipolar gases have become an increasingly important topic in the field of quantum physics in recent years. These gases consist of atoms or molecules that possess a non-zero electric dipole moment, which gives rise to long-range dipole-dipole interactions between particles. These interactions can lead to a variety of interesting and exotic quantum phenomena that are not observed in conventional gases. 

PI: John Bohn
Read More
Quantum Information Science & Technology
Don’t React, Interact: Looking Into Inert Molecular Gases
The dipolar interactions within a molecular gas
Published: October 11, 2021

One of the major strengths of JILA are the frequent and ongoing collaborations between experimentalists and theorists, which have led to incredible discoveries in physics. One of these partnerships is between JILA Fellow John Bohn and JILA and NIST Fellow Jun Ye. Bohn's team of theorists has partnered with Ye's experimentalist laboratory for nearly twenty years, from the very beginning of Ye’s cold molecule research when he became a JILA Fellow. Recently in their collaborations, the researchers have been studying a three-dimensional molecular gas made of 40K87Rb molecules. In a paper published in Nature Physics, the combined team illustrated new quantum mechanical tricks in making this gas unreactive, thus enjoying a long life (for a gas), while at the same time letting the molecules in the gas interact and socialize (thermalize) with each other.

PI: John Bohn | PI: Jun Ye
Read More
Quantum Information Science & Technology
From Liquid to Gas: A Way to study BEC
Model of the BEC interactions
Published: September 29, 2021

The Bose-Einstein Condensate (BEC) has been studied for decades, ever since its prediction by scientists Satyandra Nath Bose and Albert Einstein nearly 100 years ago. The BEC is a gas of atoms cooled to almost absolute zero. At low enough temperatures, quantum mechanics allows the locations of the atoms in the BEC to be uncertain to the extent that they can’t be located individually in the gas. The BEC has a special history with JILA, as it was at JILA that the first gaseous condensate was produced in 1995 by JILA Fellows Eric Cornell (NIST) and Carl Wieman (University of Colorado Boulder). Since 2005, research on dipolar BEC has continued, using different theories to describe the droplet’s interactions. In a paper recently published in Physical Review A, first author, and graduate student, Eli Halperin and JILA fellow John Bohn theorize a way to study the BEC using a hyperspherical approach. While the name may sound intimidating, the hyperspherical approach is simply a systematic way to look at a many-body problem. The many body problem refers to a large category of problems regarding microscopic systems with interacting particles. Bohn and Halperin applied this approach to a dipolar BEC specifically.

PI: John Bohn
Read More
Atomic & Molecular Physics
Quantum Adventures with Cold Molecules
Thumbnail
Published: September 07, 2017

Researchers at JILA and around the world are starting a grand adventure of precisely controlling the internal and external quantum states of ultracold molecules after years of intense experimental and theoretical study. Such control of small molecules, which are the most complex quantum systems that can currently be completely understood from the principles of quantum mechanics, will allow researchers to probe the quantum interactions of individual molecules with other molecules, investigate what happens to molecules during collisions, and study how molecules behave in chemical reactions. 

PI: Ana Maria Rey | PI: John Bohn | PI: Jun Ye
Read More
Atomic & Molecular Physics
The Resonance Motel
Thumbnail
Published: March 13, 2014

Quantum chaos just showed up in an ultracold gas of erbium atoms, and the Bohn theory group knows why. Theorists expect quantum chaos to appear when quantum mechanical objects get sufficiently complicated. But until now, scientists hadn’t realized that something as simple as a pair of colliding atoms could be complicated enough for quantum chaos to appear.

PI: John Bohn
Read More
Precision Measurement
The Dipolar Express
Thumbnail
Published: December 06, 2013

Physicists wonder about some pretty strange things. For instance, one burning question is: How round is the electron? While the simplest picture of the electron is a perfect sphere, it is possible that it is instead shaped like an egg. The egg shape would look a bit like a tiny separation of positive and negative charges. Physicists call this kind of charge separation an electric dipole moment, or EDM. The existence of an EDM in the electron or any other subatomic particle will have a profound impact on our understanding of the fundamental laws of physics. 

PI: Eric Cornell | PI: John Bohn | PI: Jun Ye
Read More
Atomic & Molecular Physics
The Big Chill
Thumbnail
Published: December 19, 2012

The Ye and Bohn groups have made a major advance in the quest to prepare “real-world” molecules at ultracold temperatures. As recently reported in Nature, graduate students Ben Stuhl and Mark Yeo, research associate Matt Hummon, and Fellow Jun Ye succeeded in cooling hydroxyl radical molecules (*OH) down to temperatures of no more than five thousandths of a degree above absolute zero (5mK).

PI: John Bohn | PI: Jun Ye
Read More
Precision Measurement
Probing the Tell-Tale Ions
Thumbnail
Published: August 25, 2011

JILA’s quest to determine whether the electron has an electric dipole moment (eEDM) began in 2006 with a suggestion by Fellow Eric Cornell that the molecular ion hafnium fluoride (HfF+) might be well suited for an eEDM experiment. An electric dipole moment is a measure of the separation of positive and negative charges in a system. If an electron does have an electric dipole moment, it’s a pretty darn small one. So small, in fact, that if the electron were the size of the Earth, its eEDM would only alter the planet’s roundness by less than the width of a human hair.

PI: John Bohn
Read More
Quantum Information Science & Technology
The Quantum Control Room
Thumbnail
Published: March 21, 2011

In 2008, the Ye and Jin groups succeeded in making ultracold potassium-rubidium (KRb) molecules in their ground state (See “Redefining Chemistry at JILA” in the Spring 2010 issue of JILA Light & Matter). Their next goal was to figure out how to precisely control chemical reactions of these ultracold polar molecules by manipulating the quantum states of the reactants. But first the researchers had to discover how to calm those reactions down enough to study them. Under the conditions in which they were made (an optical trap allowing motion in all three dimensions), ultracold KRb molecules were so chemically reactive they disappeared almost as soon as they were formed.

PI: Deborah Jin | PI: John Bohn | PI: Jun Ye
Read More
Atomic & Molecular Physics
The Fickle Finger of Fate
Thumbnail
Published: February 24, 2011

Putting the brakes on a superfluid dipolar Bose-Einstein condensate (BEC) just got a whole lot more interesting. Last year, the Bohn theory group explored what would occur in a dipolar BEC when a laser probe — think of it like a finger — tickled a BEC just hard enough to excite a roton.

PI: John Bohn
Read More
Atomic & Molecular Physics
Them's the Brakes
Thumbnail
Published: August 18, 2010

The Bohn group has just come up with an exciting, really complicated experiment for someone else to do. This is something theorists like graduate student Ryan Wilson, former research associate Shai Ronen, and Fellow John Bohn get a kick out of. In this case, they’re recommending an experiment to measure how fast a tiny blue laser would have to move through a dipolar Bose-Einstein condensate (BEC) to create ripples.

PI: John Bohn
Read More
Atomic & Molecular Physics | Precision Measurement
The Coldest Horse in the Race
Thumbnail
Published: January 31, 2010

The race to measure the electron’s electric dipole moment (eEDM) is picking up speed across the world, thanks to graduate student Ed Meyer of JILA’s Lazy Bohn’s Ranch (i.e., John Bohn’s theory group). Meyer has identified more than a dozen horses, a.k.a. molecules and molecular ions, with strong enough internal electric fields to compete in the eEDM derby. Imperial College of London’s Ed Hinds is riding YbF (ytterbium fluoride) and leads by a nose.

PI: John Bohn
Read More
Atomic & Molecular Physics
Altered States
Thumbnail
Published: April 12, 2009

Understanding how molecules collide is a hot topic in ultracold physics. Knowing the number of times molecules crash into each other and what happens when they do helps theorists predict the best ways to cool molecules to merely cold (1 K–1 mK), pretty cold (1 mK–1 µk), or ultracold (< 1 µK) temperatures.

PI: John Bohn
Read More
Atomic & Molecular Physics
The Oldest Trick in the Book
Thumbnail
Published: October 03, 2008

The mission to find the electron electric dipole moment (eEDM) recently took a menacing turn. Chief Eric Cornell and his protégés were already hard at work characterizing the hafnium fluoride ion (HfF+). Their goal was to be the first in the world to complete the mission. In their choice of molecule, they owed a lot to JILA theorists Ed Meyer and John Bohn (a.k.a. Agents 13 and 86), who had taken the theory world by storm in 2006 when they devised a simple and straightforward method for the evaluation of molecular candidates for an eEDM search.

PI: Eric Cornell | PI: John Bohn
Read More
Atomic & Molecular Physics
From Mental to Experimental?
Thumbnail
Published: July 16, 2008

The John Bohn lab at JILA owes its very existence to a 2002 decision by the Colorado Rockies to begin storing baseballs in a room with ~50% humidity. The conventional wisdom at the time was that Denver’s thinner air was responsible for making Coors Field a hitter’s heaven. In mile-high Denver, hitters averaged two more home runs per game because the thinner air caused a given home run ball to travel 20 feet further than at sea level. 

PI: John Bohn
Read More
Atomic & Molecular Physics
The Second Wave
Thumbnail
Published: April 12, 2007

A second wave has appeared on the horizon of ultracold atom research. Known as the p-wave, it is opening the door to probing rich new physics, including unexplored quantum phase transitions. The first wave of ultracold atom research focused on s-wave pairing between atoms, where the “s” meant the resultant molecules are not rotating. In contrast, p-waves involve higher-order pairing where the atoms do rotate around each other.

PI: Deborah Jin | PI: John Bohn
Read More
Atomic & Molecular Physics
Exploring a Cold New World
Thumbnail
Published: April 12, 2007

Researchers from the Ye, Bohn, and Greene groups are busy exploring a cold new world crawling with polar hydroxyl radical (OH) molecules. The JILA experimentalists have already discovered how to cool OH to “lukewarm” temperatures of 30 mK. They’ve precisely measured four OH transition frequencies that will help physicists determine whether the fine structure constant has changed in the past 10 billion years.

PI: Chris Greene | PI: John Bohn | PI: Jun Ye
Read More
Atomic & Molecular Physics
Ultimate Relaxation Experience
Thumbnail
Published: February 07, 2007

Scientists anticipate that cold molecules will allow them to explore all kinds of exciting new cold-matter physics. For instance, cold molecules should be able to interact with each other over much longer distances than atoms. They often exhibit an uneven distribution of electric charge called a dipole moment. Unfortunately, the complicated structures of ordinary "warm" molecules means it is very difficult to directly cool them to very cold temperatures.

PI: John Bohn
Read More
Atomic & Molecular Physics
Running Backwards
Thumbnail
Published: October 02, 2006

Does the electron have an electric dipole moment (eEDM)? If it does, the standard model of elementary particle physics says this dipole moment is many orders of magnitude below what can be measured experimentally. As Fellow John Bohn quips, "It's a darn small one."

PI: Eric Cornell | PI: John Bohn
Read More
Atomic & Molecular Physics
BEC Pancakes
Thumbnail
Published: September 30, 2006

Pancakes of Bose-Einstein condensates (BECs) of polar molecules are repulsive and potentially unstable. However, the physics of these dipolar condensates is delicious, according to research associate Shai Ronen, graduate student Daniele Bortolotti, and Fellow John Bohn. The JILA theorists recently studied BECs with purely dipolar interactions in oblate (pancake) traps.

PI: John Bohn
Read More