Attosecond Nonlinear Optics

Figure. Controlling X-ray light using laser light. By changing the color, polarization and phase of the femtosecond laser beam, the spectrum, pulse duration, polarization, phase and shape of the generated short wavelength HHG beam can be controlled—on exquisite sub-Å and sub-attosecond (10-18 s) length and time scales. 

Ever since the invention of the visible laser over 50 years ago, scientists have been striving to create lasers that generate coherent beams at shorter wavelengths i.e. the extreme UV (EUV) and soft X-ray (SXR) regions of the spectrum. This quest has led to the construction of large facilities, such as kilometer-scale x-ray free-electron lasers, to reach the keV photon energy region. Ultimately however, to be broadly accessible for science, medicine and industry, laser-like (i.e. coherent) x-ray sources need to be much smaller and cheaper.

Fortunately, high harmonic generation (HHG)—the coherent equivalent of the Roentgen x-ray tube—represents a unique new quantum technology for generating ultrafast coherent beams spanning the VUV, EUV and keV regions of the spectrum. In HHG, a femtosecond laser pulse is focused into a gas – where it manipulates the quantum wavefunction of an electron, to create a nanoscale dipole antenna. By confining the gas in a waveguide geometry, the HHG process can be very efficient, and useful for a broad range of applications in materials and chemical science. Moreover, by changing the color, polarization and phase of the femtosecond laser beam, the spectrum, pulse duration, polarization, phase and shape of the generated HHG beam can be controlled—on exquisite sub-Å and sub-attosecond (10-18 s) length and time scales. This has allowed us to develop a unique light source that can be tuned from a 12-octave spanning supercontinuum to isolated spectral peaks, with full temporal and spatial coherence, and with arbitrary polarization and OAM charge.

In the future, laser-like coherent hard X-ray high harmonic beams may well become a feasible alliterative to the lightbulb-like x-ray tube that is still ubiquitous in medical imaging—more than a century after Roentgen’s discovery.


Related Publications

  1. D. E. Couch, D. D. Hickstein, D. G. Winters, S. J. Backus, M. M. Kirchner, J. J. Ramirez, S. R. Domingue, C. G. Durfee, M. M. Murnane, H. C. Kapteyn, “Ultrafast1 MHz ultrafast vacuum UV source via highly cascaded harmonic generation in negative-curvature hollow-core fibers,” Optica 7, 832 (2020). DOI: 10.1364/OPTICA.395688

  2. L. Rego, K. M. Dorney, N. J. Brooks, Q. L. Nguyen, C.-T. Liao, J. San Román, D. E. Couch, A. Liu, E. Pisanty, M. Lewenstein, L. Plaja, H. C. Kapteyn, M. M. Murnane, C. Hernández-García, “Generation of extreme-ultraviolet beams with time-varying orbital angular momentum,” Science 364, eaaw9486 (2019). Featured on coverDOI:10.1126/science.aaw9486

  3. K. M. Dorney, L. Rego, N. J. Brooks, J. San Román, C.-T. Liao, J. L. Ellis, D. Zusin, C. Gentry, Q. L. Nguyen, J. M. Shaw, A. Picón, L. Plaja, H. C. Kapteyn, M. M. Murnane, C. Hernández-García, “Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation,” Nature Photonics 13, 123–130 (2019). DOI: 10.1038/s41566-018-0304-3  

  4. C. Chen, Z. Tao, C. Hernández-García, P. Matyba, A. Carr, R. Knut, O. Kfir, D. Zusin, C. Gentry, P. Gychtol, O. Cohen, L. Plaja, A. Becker, A. Jaron-Becker, H. Kapteyn, M. Murnane, “Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology,” Science Advances 2, e1501333 (2016). DOI: 10.1126/sciadv.1501333 

  5. T. Fan, P. Gychtol, R. Knut, C. Hernández-García, D. D. Hickstein, D. Zusin, C. Gentry, F. J. Dollar, C. A. Mancuso, C. W. Hogle, O. Kfir, D. Legut, K. Carva, J. L. Ellis, K. M. Dorney, C. Chen, O. G. Shpyrko, E. E. Fullerton, O. Cohen, P. M. Oppeneer, D. B. Milošević, A. Becker, A. Jaroń--Becker, T. Popmintchev,  M. M. Murnane, H. C. Kapteyn, “Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism,” PNAS 112 (46) 14206–14211 (2015). DOI: 10.1073/pnas.1519666112.  

  6. D. Popmintchev, C. Hernández-García, F. Dollar, C. Mancuso, J. Pérez-Hernández, M. C. Chen, A. Hankla, X. Gao, B. Shim, A. Gaeta, M. Tarazkar, D. Romanov, R. Levis, J. Gaffney, M. Foord, S. Libby, A. Jaroń-Becker, A. Becker, L. Plaja, M. Murnane, H. Kapteyn, T. Popmintchev, “Ultraviolet surprise: Efficient soft X-ray high harmonic generation in multiply-ionized plasmas,” Science 350, 1225 (2015). DOI: 10.1126/science.aac9755 

  7. O. Kfir, P. Grychtol, E. Turgut, R. Knut D. Zusin, D. Popmintchev, T. Popmintchev, H. Nembach, J. M. Shaw, A. Fleicher, H. Kapteyn, M. Murnane, O. Cohen, “Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics,” Nature Photonics 9, 99–105 (2015). DOI:  10.1038/NPHOTON.2014.293 

  8. M.-C. Chen, C. Mancuso, C. Hernández-García, F. Dollar, B. Galloway, D. Popmintchev, P.-C. Huang,  B. Walker, L. Plaja, A. A. Jaroń-Becker, A. Becker, M. M. Murnane, H. C. Kapteyn, T. Popmintchev, “Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers,” Proceedings of the National Academy of Sciences 111 (23) E2361–E2367 (2014); DOI:10.1073/pnas.140742111 

  9. C. Hernández-García, J.A. Pérez-Hernández, T. Popmintchev, M. Murnane, H. Kapteyn, A. Jaroń-Becker, A.Becker, and L. Plaja, “Zeptosecond high harmonic keV X-ray waveforms driven by midinfrared laser pulses,” Physical Review Letters 111, 033002 (2013). DOI: 10.1103/PhysRevLett.111.033002 

  10. T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D. Mücke, A. Pugzlys, A. Baltuška, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernández-García, L. Plaja, A Becker, A. Jaroń-Becker, M. M. Murnane, H.C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287–1291 (2012). DOI: 10.1126/science.1218497 

  11. M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, M. M. Murnane and H. C. Kapteyn, “Bright, coherent, ultrafast soft X-ray harmonics spanning the water window from a tabletop source,” Physical Review Letters 105, 173901 (2010). DOI: 10.1103/PhysRevLett.105.173901 

  12. T. Popmintchev, M.-C. Chen, P. Arpin, M. M. Murnane and H. C. Kapteyn, “The attosecond nonlinear optics of bright coherent X-ray generation,” Nature Photonics 4, 822 (2010).  DOI: 10.1038/nphoton.2010.256  

  13. I. Thomann, A. Bahabad, R. Trebino, X. Liu M. M. Murnane and H. C. Kapteyn, “Characterizing isolated attosecond pulses from hollow-core waveguides using multi-cycle driving pulses,” Optics Express 17, 4611 (2009). DOI:  10.1364/OE.17.004611 

  14. T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum,” Proceedings of the National Academy of Sciences 106 (26), 10516 (2009). DOI: 10.1073/pnas.0903748106  

  15. T. Popmintchev, M.-C. Chen, O. Cohen, M.  E. Grisham, J. J. Rocca, M.M. Murnane, H. C. Kapteyn, “Extended phase matching of high harmonics driven by mid-infrared light,” Optics Letters 33, 2128 (2008). DOI: 10.1364/OL.33.002128

  16.  H. C. Kapteyn, O. Cohen, I. Christov, and M. M. Murnane, “Harnessing attosecond science in the quest for coherent X-rays,” Science 317, 775 (2007). DOI: 10.1126/science.1143679 

  17. H. C. Kapteyn, M. M. Murnane and I. P. Christov, “Extreme nonlinear optics: Coherent X rays from lasers,” invited article, Physics Today, 58(3), 39 (2005). DOI: 10.1063/1.1897563

  18. R. Bartels, A. Paul, H. Green, H. C. Kapteyn, M. M. Murnane, S. Backus, I. P. Christov, Y. Liu, D. Attwood, C. Jacobsen, “Generation of spatially coherent light at extreme ultraviolet wavelengths,” Science 297, 376 (2002). DOI: 10.1126/science.1071718  

  19. A. Rundquist, C. Durfee, Z. Chang, C. Herne, H. Kapteyn and M. Murnane, “Phase-matched generation of coherent soft X-rays,” Science 280, 1412 (1998). DOI: 10.1126/science.280.5368.1412