Quantum science promises a range of technological breakthroughs, such as quantum computers that can help discover new pharmaceuticals or quantum sensors for navigation. These capabilities rest on two unusual properties of quantum systems, superposition and entanglement. Just as a computer register stores information in the zeros or ones of classical bits, quantum bits, or qubits, store quantum information—but in the quantum world, superposition allows the qubit to be both a zero and a one at the same time. Furthermore, multiple qubits can be bizarrely correlated through a process called entanglement. When two qubits are entangled with each other, each qubit individually looks to be in a random state, but measuring one qubit reveals perfect information about its entangled partner. These properties of superposition and entanglement make qubits quite special, as they can work more efficiently than a classical computer’s bits.
However, a common challenge in actually using these quantum systems arises due to their limited memory time, or “coherence” time, which is often measured in milliseconds. Many researchers at JILA study and use superposition and entanglement of quantum systems, including JILA fellow Adam Kaufman. Previously, Kaufman and his research team focused on improving the coherence time of the strontium atoms’ superposition between the ground state and the “clock” state, so named because these two states form the basis for state-of-the-art atomic clocks. As reported in two new papers, researchers from this lab have extended these studies to much larger system sizes, with an atom in a superposition of hundreds of locations, and separately, demonstrating optical clock entanglement with seconds-scale coherence time.