JILA Science Seminar

Exploring Quantum Networking Nodes for Neutral Atom Tweezer Arrays

When
-

Abstract: Rydberg atom arrays have emerged as a promising candidate for quantum computation. However, scaling up the platform beyond a few thousand qubits would require a modular approach. An integrated optical cavity could serve as a quantum networking node between distant quantum processors. In this talk, I will show our results towards this integration for two candidate platforms: a nano-photonic crystal cavity (PCC) and a Fabry-Perot Fiber cavity (FPFC). In our lab, we have already demonstrated all the necessary quantum networking capabilities of the PCC for ground-state atoms.

Universal quantum correlations with reduced density matrices

When
-

Strong quantum correlations lie in the center of many fascinating physical phenomena, as for instance quantum phase transitions. A direct way to study quantum correlations in many body systems is to compute certain observables with the respective wave function. Yet, it is known that reduced density matrices are able to describe and predict directly the bulk of physical features of such quantum phenomena, overcoming the curse of dimensionality of wave-function-based theories.