Of the many different objects in the galaxy, M-dwarf stars, also known as red dwarf stars, are of particular interest to astrophysicists. These small objects are the most common type of star in the universe and have unique properties. “If you lay out all of the different types of stars [in a plot of stellar color versus brightness] we can see, based on what color they are and how bright they are, [that] most stars fall on a line we call the ‘main sequence’,” explained graduate student Connor Bice. “That's where they are born, and they stay in that same spot for most of their lives. Down at the tail end of that [line] are red dwarfs. They're the least massive, the coldest, and the smallest type of main-sequence stars.” Bice is a researcher in JILA Fellow and astrophysicist Juri Toomre's group, and both he and Toomre have been looking at some of a red dwarf's unique properties, mainly their magnetic fields and convective flows. In a new paper published in the Astrophysical Journal, Bice and Toomre have found a link between the star’s convective cycles, or the heat cycles in a star’s atmosphere, and its magnetic fields, using fluid dynamics simulations.