Virtual AMO Series

Dense arrays: a novel quantum tool

When
-

Abstract: The physics of cooperative atoms/radiators in regular 2D arrays is dominated by two properties: first, a strongly frequency-selective reflectivity and second, the ability to confine polariton modes cleanly on the surface. This makes such a system highly sensitive to and controllable by light fields. Applications of these systems include beam steering, quantum information processing, metrology, and nonlinear single-photon techniques.

Quantum point defects: Can these defects be less, well, defective?

When
-

Abstract: Point defects in crystals are the solid state analog to trapped ions. Thus these “quantum defects”, which can be integrated into solid-state devices, have gained popularity as qubit candidates for scalable quantum networks. In this talk, I will introduce some of the basic quantum defect properties desirable for quantum network applications.

Photoemission delays in molecules

When
-

Abstract: Attosecond chronoscopy has revealed small but measurable delays in photoionization, characterized by the ejection of an electron on absorption of a single photon. Ionization-delay measurements in atomic targets provide a wealth of information about the timing of the photoelectric effect, resonances, electron correlations and transport. However, extending this approach to molecules presents challenges, such as identifying the correct ionization channels and the effect of the anisotropic molecular landscape on the measured delays.