CANCELLED
This talk has been CANCELLED.
Title: Developing Deployable Quantum Sensors
Abstract:
This talk has been CANCELLED.
Title: Developing Deployable Quantum Sensors
Abstract:
Abstract: In this talk, I will describe recent developments in the Simon/Schuster collaboration, where we are harnessing cavity quantum electrodynamics for both manybody physics and quantum information. I will begin with an overview of our photonic quantum materials efforts, highlighting the analogy between photons in a lattice of cavities (or family of cavity modes) and electrons in solids.
Abstract: Dissipation and fluctuations are known to be sources of order in complex non-linear systems formed by many agents, as they lead to the generation of self-organized spatial or temporal structures. However, dissipation is considered to produce loss of coheren
Abstract: I will introduce a new class of quantum states of matter, known as ‘fracton phases.’ I will explain how these phases provide a new frontier for non-equilibrium quantum dynamics, offering novel routes to ergodicity breaking, and new classes of hydrodynamic phenomena. I will also comment on how insights gleaned from the study of fractons can be applied to quantum dynamics in broader contexts.
==========
Refreshments @ 3:30 p.m.
Abstract: Many-body correlations govern a variety of important quantum phenomena including the emergence of superconductivity and magnetism in condensed matter as well as chemical reactions in liquids. Understanding quantum many-body systems is thus one of the central goals of modern sciences and technologies. Here we demonstrate a new pathway towards this goal by generating a strongly correlated ultracold Rydberg gas with a broadband ultrashort laser pulse.