CUbit Quantum Seminar

Towards Efficient Programmable Quantum Simulation of Correlated Bosons and Lattice Gauge Theories

When
-

Abstract: It is well-known that interacting fermions are difficult to simulate on quantum computers because of the sign problem. It is less widely appreciated that simulations of models containing bosons can also be difficult—unless the hardware contains native bosonic degrees of freedom. The ability of superconducting quantum processors to control and make quantum non-demolition (QND) measurements of individual microwave photons is a powerful resource for quantum simulation, especially for simulation of condensed matter models and lattice gauge theories containing bosons.

Photonic Integrated Circuit Technology for Quantum and Other Application

When
-

Abstract: Tremendous progress is being made at silicon photonic foundries around the world to improve the performance, yield and capability of photonic integrated circuits (PICs) and that is opening up new markets, including quantum computing. These results will be described with an emphasis on integrating lasers to PICs and the improvements in laser and system performance that are possible.
 

Programmable Molecular Tweezer Arrays for Quantum Science

When
-

Abstract: Polar molecules trapped in programmable optical tweezer arrays are an emerging platform for quantum science. In this talk, I will report our group’s work on advancing quantum control of molecular tweezer arrays and our first experiments on using these arrays for quantum information processing and simulation of quantum many-body Hamiltonians.I will first briefly present our work that establishes the essential building blocks for quantum science in this platform.

The Computational Power of Random Quantum Circuits in Arbitrary Geometries

When
-

Abstract: Empirical evidence for a gap between the computational powers of classical and quantum computers has been provided by experiments that sample the output distributions of two-dimensional quantum circuits. Many attempts to close this gap have utilized classical simulations based on tensor network techniques, and their limitations shed light on the improvements to quantum hardware required to frustrate classical simulability.

Quantum computing with Yb Rydberg atoms

When
-

Abstract: Neutral atom quantum computing is a rapidly developing field. Exploring new atomic species, such as alkaline earth atoms, provides additional opportunities for cooling and trapping, measurement, qubit manipulation, high-fidelity gates and quantum error correction. In this talk, I will present recent results from our group on implementing high-fidelity gates on nuclear spins encoded in metastable 171Yb atoms [1], including mid-circuit detection of gate errors that give rise to leakage out of the qubit space, using erasure conversion [2,3].

Integrated quantum photonic and acoustic sensors

When
-

Abstract: Integrated sensors have fundamentally revolutionized nearly all electronic systems. How can quantum technology contribute? In this talk, I aim to present recent advances in integrated quantum nonlinear photonics and electromechanics and outline their potential to enhance sensing technologies. I'll start by presenting Stokowski [1] and Park's [2] demonstrations of integrated quantum optical sensors and squeezed light sources in thin-film lithium niobate.