CUbit Quantum Seminar

CUbit Seminar Series

When
-

The Will Lab studies quantum systems of ultracold atoms and molecules. The lab cools atoms and molecules to temperatures less than a millionth of a degree above absolute zero, where atomic behavior is fully governed by quantum mechanics. Under these conditions, the lab controls individual quantum particles and their interactions with high precision using atomic physics tools, enabling novel platforms for many-body quantum physics, quantum simulation, quantum computing, and quantum optics.

CUbit Seminar Series

When
-

Since 2019, the CUbit Quantum Seminar Series at the University of Colorado Boulder has been a cornerstone of Colorado’s rapidly expanding quantum innovation ecosystem. Each seminar brings leading quantum scientists, entrepreneurs, and technologists from around the world to campus, creating a rare forum where students, researchers, and industry partners engage directly with the people and ideas shaping the future of quantum technology.

Enhancing the performance of an optical lattice clock with multiple atomic ensembles

When
-

The remarkable precision of optical atomic clocks enables new applications and can provide sensitivity to novel and exotic physics. In this talk I will explain the motivation and operating principles of a “multiplexed" strontium optical lattice clock, which consists of two or more atomic ensembles of trapped, ultra-cold strontium in one vacuum chamber. This miniature clock network enables us to bypass the primary limitations to standard comparisons between atomic clocks and thereby achieve new levels of precision.

Piezo-Optomechanics

When
-

The quantum 2.0 revolution is well underway, with a tantalizing future just over the horizon wherein computing, networking, sensing, and even time-keeping will be unimaginably more capable than they are today. The promise of this future hinges on the ability to control, entangle, and measure both individual qubits and large systems of them. Many of the most promising physical qubit systems being developed for these purposes are atomic in nature, i.e. trapped neutral atoms, trapped ions, and artificial atoms in crystals.

Quantum Computing Enhanced Sensing

When
-

Quantum computing and sensing represent two distinct frontiers of quantum information science. Here, we harness quantum computing to solve a fundamental and practically important sensing problem: the detection of weak oscillating fields with unknown strength and frequency. We present a quantum computing enhanced sensing protocol, that we dub quantum search sensing, outperforming all existing approaches. Furthermore, we prove our approach is optimal by establishing the Grover-Heisenberg limit -- a fundamental lower bound on the minimum sensing time.

A mechanical quantum memory

When
-

Mechanical systems operating in the quantum regime offer an attractive platform for quantum information processing, precision sensing, and probing fundamental physics. In this talk, I will present new techniques for generating and characterizing non-classical states of mechanical motion using superconducting qubits. Our approach couples the electrical and mechanical degrees of freedom via modulation of the electrostatic force in a miniaturized vacuum-gap capacitor.

From diamond defects to protein-based qubit sensors

When
-

Quantum metrology enables some of the world's most sensitive measurements with potentially far-reaching applications in the life sciences. Although the ultrahigh sensitivity of qubit sensors has sparked the imagination of researchers, implementing them in actual devices that enable monitoring cellular processes or detecting diseases remains largely elusive. Overcoming the limitations that hinder the broader application of quantum technology in the life sciences requires advances in both fundamental science and engineering.

Towards Efficient Programmable Quantum Simulation of Correlated Bosons and Lattice Gauge Theories

When
-

Abstract: It is well-known that interacting fermions are difficult to simulate on quantum computers because of the sign problem. It is less widely appreciated that simulations of models containing bosons can also be difficult—unless the hardware contains native bosonic degrees of freedom. The ability of superconducting quantum processors to control and make quantum non-demolition (QND) measurements of individual microwave photons is a powerful resource for quantum simulation, especially for simulation of condensed matter models and lattice gauge theories containing bosons.