Abstract: Polar molecules trapped in programmable optical tweezer arrays are an emerging platform for quantum science. In this talk, I will report our group’s work on advancing quantum control of molecular tweezer arrays and our first experiments on using these arrays for quantum information processing and simulation of quantum many-body Hamiltonians.I will first briefly present our work that establishes the essential building blocks for quantum science in this platform. These include preparation and detection of single molecules, control of their interactions, and the deterministic entanglement of pairs of molecules. Next, I will report on our subsequent efforts to further advance molecular control to a level necessary for quantum applications. In particular, I will focus on our recent work that uses mid-circuit measurement to both improve quantum state preparation and to implement erasure error detection and conversion in molecular qubits. Lastly, I will present recent work on simulating interacting quantum spin chains using 1D molecular arrays. Specifically, I will report on several phenomena that we have observed in the quantum dynamics of 1/r3 XX/XXZ/XYZ spin chains. These include coherent quantum walks of single spin excitations, appearance of repulsive bound states, and coherent pair creation and annihilation.
==========
All seminars are held in the CASE Auditorium. Light refreshments will be served starting at 3:30 p.m. Talk begins at 4 p.m.
This seminar series is sponsored by CUbit with generous support of the Caruso Foundation.