Trapping circular Rydberg states of strontium in optical tweezers at 4K
Rydberg atoms in optical tweezers have become a leading platform for both quantum simulation and quantum computing. However, they are often limited by their relatively short lifetime of a few tens of microseconds. One way to overcome this limitation is to use Rydberg atoms with maximum angular momentum (m = l = n-1), known as circular states. When placed in a cryogenic environment, these states can exhibit lifetimes of several milliseconds. Circular states of alkaline-earth-like atoms offer additional advantages.


