JILA Science Seminar

Adiabatic passage and geometric phases: are they hot or not?

When
-
 
In this informal seminar I will present an appraisal of adiabatic passage which transforms quantum states much better than one should expect (and I will explain why this is the case). And I will discuss an often stated claim that geometric phases, used in many  gate proposals for quantum computing, are particularly robust because of their geometric character (and I will explain why I think this is not the case).

Coherent Control of Metastable States - A View from Behind the Computer Screen

When
-

Creating, understanding, and controlling metastable states of quantum matter is highly interesting due to the prospects of enabling ultrafast and energy efficient devices with novel functionality. Recent estimates indicates that non-thermal pathways to metastable phases may require several orders of magnitude less energy than a thermally driven process. In addition, hidden states of matter may be accessed if a system out of equilibrium follow trajectories to a state inaccessible, or nonexistent, under normal equilibrium conditions.

Quantum simulation of a lattice gauge theory: thermalization, many-body scars, and collision dynamics

When
-

Abstract: Gauge theories form the foundation of modern physics, with applications ranging from early-universe cosmology and heavy-ion collisions to condensed matter systems. However, simulating the real-time dynamics of such quantum many-body systems on classical computers is fraught with difficulties, motivating the pursuit of alternative venues. I will present recent experiments where we employ a large-scale Bose-Hubbard quantum simulator to emulate a U(1) lattice gauge theory, which couples charged matter fields through dynamical gauge fields.

Recent progress towards a solid-state nuclear clock with Thorium-229

When
-

Abstract:

Among all known isotopes, Thorium-229 has the lowest nuclear excited state, only 8.4 eV above the ground state. This so-called "isomer" is accessible to VUV laser excitation and has been proposed as a robust clock transition for future frequency standards. The talk will present most recent progress on measuring the exact nuclear excitation energy and the isomer lifetime in a solid-state environment.

Illuminating exotic chemistry and physics with single-quantum-state spectroscopy

When
-

Molecules are amongst the most complex objects that can be controlled and studied at the individual quantum state level. In this talk, I will introduce some of the extraordinary advances made in the last decade by the application of AMO physics tools, including cavity-enhanced optical frequency comb and microwave techniques, to such quantum-state-resolved spectroscopy.

Nanoscale X-ray Imaging Capabilities at NSLS-II and Their Application to Microelectronics Research

When
-

National Synchrotron Light Source II (NSLS-II) has world-leading nanoscale X-ray imaging capabilities. The Full-field X-ray Imaging (FXI) beamline offers nanoscale tomography at ~30 nm resolution with an unprecedented imaging throughput down to ~10 seconds. The Hard X-ray Nanoprobe (HXN) beamline delivers multimodal X-ray imaging based on scanning X-ray microscopy with the smallest beam size of ~10 nm. In addition, additional imaging beamlines are either under construction or being designed to further strengthen the imaging portfolio at NSLS-II.