JILA Auditorium

Nanomaterials Enable Delivery of Genetic Material Without Transgene Integration in Mature Plants

When
-

Abstract: Genetic engineering of plants is at the core of sustainability efforts, natural product synthesis, and agricultural crop engineering. The plant cell wall is a barrier that limits the ease and throughput with which exogenous biomolecules can be delivered to plants. Current delivery methods either suffer from host range limitations, low transformation efficiencies, tissue regenerability, tissue damage, or unavoidable DNA integration into the host genome.

A versatile quantum playground with solid-state quantum emitters

When
-

Abstract: Solid-state quantum emitters have attracted much attention as an integrated source of photonic and spin qubits, which are basic elements for a range of quantum applications. Recent advances in the generation, manipulation, and integration of these emitters have demonstrated a variety of quantum resources: bright quantum light sources, quantum memories, and spin-photon interfaces. In particular, controllable quantum emitters in photonic cavities or waveguides enable scalable quantum interactions between multiple photons and emitters.

Relativistic Fluid Dynamics: From Particle Colliders to Neutron Star Mergers

When
-

Abstract: Heavy-ion collision experiments have provided overwhelming evidence that quarks and gluons, the elementary particles within protons and neutrons, can flow as a nearly frictionless, strongly interacting relativistic liquid over distance scales not much larger than the size of a proton. On the other hand, with the dawn of the multi-messenger astronomy era marked by the detection of a binary neutron star merger, it became imperative to understand how extremely dense fluids behave under very strong gravitational fields.

Cold chemistry in hot cores: exploring the early origins of chemical complexity in nascent stellar systems

When
-

Abstract: The interstellar medium provides an enormous laboratory for the exploration of chemistry of various kinds. But it is not a laboratory that we control, and its results - while resting on processes that individually may occur very rapidly - unfold on timescales that are typically much longer than a human lifetime. Our observations of the molecular compositions of interstellar clouds and star-forming regions represent only snapshots of a process of chemical evolution that must be pieced together through various means.

Rapid Diagnostics for Infectious Diseases Using Gold Nanoparticles

When
-

Abstract: The global COVID-19 pandemic has underscored the need for innovations in disease diagnostics.  Paper immunoassays, such as lateral flow assays, have been a critical tool for infectious diseases. These assays are low-cost, can be used in rugged environments, and possess sample-to-answer times of minutes, so they are attractive for widespread deployment for disease surveillance, quarantining, and treatment.  Biological fluids such as blood or saliva is added to the paper strip, which wicks through.