K-M Group
Kapteyn/Murnane group
Liao
Ting is originally from Taiwan, where he received his Bachelor of Science degree in Space Science and Master of Science degree in physics. After working in the semiconductor and x-ray industries for two years, he came to the US to study optics. Ting received his PhD degree in Optical Sciences from the University of Arizona in 2017.
Ultrafast Laser Science
Science and technology are inextricably linked and continue to drive each other. Ultrafast lasers have revolutionized our understanding of how molecules and materials work and how charges, spins, phonons and photons interact dynamically. In past research, our group designed Ti:sapphire lasers that operate at the limits of pulse duration and stability, with adjustable pulse durations from 7 fs on up.
Nanoscale Acoustic Metrologies
The demand for faster, more efficient, and more compact nanoelectronic devices, like smartphone chips, requires engineers to develop increasingly complex designs. To achieve this, engineers use layer upon layer of very thin films – as thin as only a couple strands of DNA – with impurities added, to tailor the function.
Nanostructured Materials
Nanoparticles exhibit a surface-area-to-volume ratio many orders of magnitude higher than bulk materials, allowing them to serve as powerful catalysts for chemical reactions, both in the laboratory and as atmospheric aerosols.
Nanoscale Energy Transport
Heat transport is driven by a thermal gradient, flowing from hot to cold regions in a material. However, at dimensions <100nm, bulk models no longer accurately predict the transport properties of materials. Because no complete models of nanoscale heat transport were available, it was assumed instead that bulk-like diffusive heat transport was valid—provided that an effective parameter, such as a size-dependent thermal conductivity, was incorporated.
Nanoimaging
Although x-ray imaging has been explored for decades, and visible-wavelength microscopy for centuries, it is only recently that the spectral region in between―the extreme ultraviolet (EUV)―has been explored for imaging nanostructures and nanomaterials.
Angle Resolved Photoemission
High harmonics are ideal as the illumination source for time- and angle-resolved photoemission spectroscopy (trARPES), which can measure the full electronic band structure of a material. Moreover, a new generation of ultrafast (~50-100fs), MHz rep rate, VUV (1-20eV) highly-cascaded high harmonics driven by compact fiber lasers have 10-100meV energy resolution, and are ideal for spin-resolved ARPES (Optica 7, 832 (2020).
Spin Dynamics
Magnetism has been the subject of scientific inquiry for more than 2000 years. However, it is still an incompletely understood phenomenon. The fundamental length and time scales for magnetic phenomena range from Å (exchange lengths) and sub-femtoseconds (exchange splitting) on up.