syllabus | timetable | projects | problems | clicker questions | texts | images |
Fri 2021 Jan 15 (no credit)
Wed 2021 Jan 20:
Fri 2021 Jan 22:
Mon 2021 Jan 25:
Wed 2021 Jan 27:
Fri 2021 Jan 29:
Wed 2021 Feb 3:
Mon 2021 Feb 8:
Wed 2021 Feb 10:
Mon 2021 Feb 15:
Fri 2021 Feb 19:
Mon 2021 Feb 22:
Wed 2021 Feb 24:
The Schwarzschild metric is \[ d s^2 = - ( 1 - r_s/r ) \, dt^2 + {dr^2 \over 1 - r_s/r} + r^2 ( d\theta^2 + \sin^2\!\theta \, d\phi^2 ) \] where \(r_s = 2 G M / c^2\) is the Schwarzschild radius, the horizon radius. |
Fri 2021 Feb 26:
Mon 2021 Mar 1:
The Schwarzschild metric is \[ d s^2 = - ( 1 - r_s/r ) \, dt^2 + {dr^2 \over 1 - r_s/r} + r^2 ( d\theta^2 + \sin^2\!\theta \, d\phi^2 ) \] where \(r_s = 2 G M / c^2\) is the Schwarzschild radius, the horizon radius. |
Wed 2021 Mar 3:
Mon 2021 Mar 8:
Wed 2021 Mar 10:
Fri 2021 Mar 12:
Wed 2021 Mar 17:
Mon 2021 Mar 22:
Watch the Event Horizon Telescope video, the 33 minutes from 5.30 to 38.00.
Wed 2021 Mar 24:
Mon 2021 Mar 29:
Wed 2021 Mar 31:
Wed 2021 Apr 2
Mon 2021 Apr 5
Wed 2021 Apr 7
Fri 2021 Apr 9
Mon 2021 Apr 12:
Wed 2021 Apr 14:
Mon 2021 Apr 19:
Wed 2021 Apr 21:
Fri 2021 Apr 23:
Mon 2021 Apr 26:
Wed 2021 Apr 28:
Spring 2021 ASTR 3740 Homepage
syllabus | timetable | projects | problems | clicker questions | texts | images |
Updated 2021 Apr 28