JILA X317

Electron and Photon Detection for Microscopies

When
-

Seeing small things takes bright lights and great optics. But you still have to see something. This talk will discuss detectors for electron and X-ray microscopies: how they work, what are they challenges, and where are the opportunities. The competition is intense: the human eye has ~108 ‘pixels’ and a dynamic range of ~104 (and has a direct connection to a built-in neural processor). No camera today can match these specs (although we are getting close).

Industrial Applications of Ultrafast Lasers II: Illustrative Examples

When
-

As a follow-up to Seminar I, I will discuss specific examples of fs UPS and photovoltage experiments on industrially relevant materials and stacks. Aside from single crystal Si wafers, virtually all materials found in MOS devices, photovoltaics, oxides, organic films (OLEDs, resists) and phase change materials, are polycrystalline or amorphous. Angle integrated UPS provides high count rates that increase sensitivity useful for identifying defect state densities in materials.

Industrial Applications of Ultrafast Lasers I: Basic Physics and Examples

When
-

CU Boulder · JILA X317 | UC Berkeley · Birge 468 Critical to the design and development of present and future semiconductor and quantum devices is the full understanding of the electronic structure of the materials that comprise the complex functional stacks in a non-destructive way. In Seminars I and II, I will describe the application of femtosecond ultraviolet photoelectron and photovoltage spectroscopy (fs UPPS) to fully characterize the electronic structure of industrially important materials and devices.

Entanglement optimization in quantum trajectories

When
-

Abstract: In this talk I present a method to solve the equations of motion of open quantum many-body systems. It is based on a combination of generalized wave function trajectories and matrix product states. More specifically, we developed an adaptive quantum stochastic propagator, which minimizes the expected entanglement in the many-body quantum state, thus minimizing the computational cost of the matrix product state representation of quantum trajectories.

Dipolar spin-exchange and entanglement between molecules in an optical tweezer array

When
-

Abstract: Ultracold polar molecules are promising candidate qubits for quantum computing and quantum simulations. Their long-lived molecular rotational states form robust qubits, and the long-range dipolar interaction between molecules provides quantum entanglement. We demonstrate dipolar spin-exchange interactions between single CaF molecules trapped in an optical tweezer array.